North Central Texas Water Quality Project

Richland-Chambers Reservoir Watershed Protection Plan Stakeholder Meeting Waxahachie, Texas

AGENDA

September 20, 2016

- 9:30 Refreshments and Sign-in
- 9:45 Welcome and Introductions Tina Hendon, Watershed Program Manager, Tarrant Regional Water District
- 10:00 Watersheds 101 Introduction to Watersheds Morgan Buob, Education & Outreach Coordinator, Tarrant Regional Water District
- 10:20 Water Quality Management in Texas Darrel Andrews, Assistant Environmental Director, Tarrant Regional Water District
- 10:35 Water Quality in the Richland-Chambers Reservoir Mark Ernst, Environmental Manager, Tarrant Regional Water District
- 10:50 Break
- 11:00 Use of Water Quality Models Dr. Srinivasan, Texas A&M Spatial Sciences Lab
- 11:15 National Water Quality Initiative NRCS Beau Brooks, District Conservationist, USDA Natural Resources Conservation Service

11:30 Lunch

- 12:00 Importance of Water Quality The Miller-Coors Perspective Lairy Johnson, Environmental and Sustainability Engineer, Miller-Coors
- 12:15 Watershed Protection Plans Tina Hendon, Watershed Program Manager, Tarrant Regional Water District
- 12:30 Roles of Stakeholders and Agencies *Clint Wolfe, Program Manager, Texas A&M AgriLife Research*
- 12:45 Next Steps/Facilitated Discussion Clint Wolfe, Program Manager, Texas A&M AgriLife Research
- 1:00 Adjourn

North Central Texas Water Quality Project

Richland-Chambers Reservoir Watershed Protection Plan Stakeholder Meeting Corsicana, Texas

AGENDA

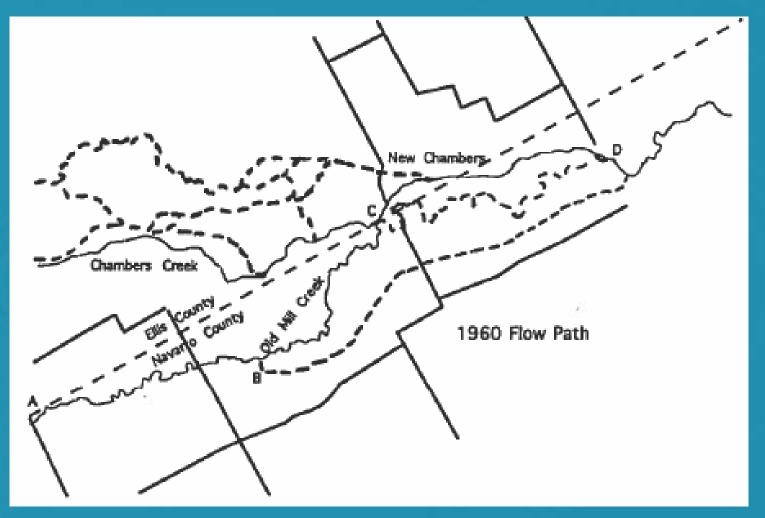
September 21, 2016

- 9:30 Refreshments and Sign-in
- 9:45 Welcome and Introductions Tina Hendon, Watershed Program Manager, Tarrant Regional Water District
- 10:00 Watersheds 101 Introduction to Watersheds Morgan Buob, Education & Outreach Coordinator, Tarrant Regional Water District
- 10:20 Water Quality Management in Texas Darrel Andrews, Assistant Environmental Director, Tarrant Regional Water District
- 10:35 Water Quality in the Richland-Chambers Reservoir Mark Ernst, Environmental Manager, Tarrant Regional Water District
- 10:50 Break
- 11:00 Use of Water Quality Models Dr. Srinivasan, Texas A&M Spatial Sciences Lab
- 11:15 National Water Quality Initiative NRCS Beau Brooks, District Conservationist, USDA Natural Resources Conservation Service
- 11:30 SCF Landowner Survey Dr. Dianne Stroman, Collin College and Texas A&M University
- 11:45 Lunch
- 12:00 Importance of Water Quality The Miller-Coors Perspective Lairy Johnson, Environmental and Sustainability Engineer, Miller-Coors
- 12:15 Watershed Protection Plans Tina Hendon, Watershed Program Manager, Tarrant Regional Water District
- 12:30 Roles of Stakeholders and Agencies *Clint Wolfe, Program Manager, Texas A&M AgriLife Research*
- 12:45 Next Steps/Facilitated Discussion Clint Wolfe, Program Manager, Texas A&M AgriLife Research
- 1:00 Adjourn

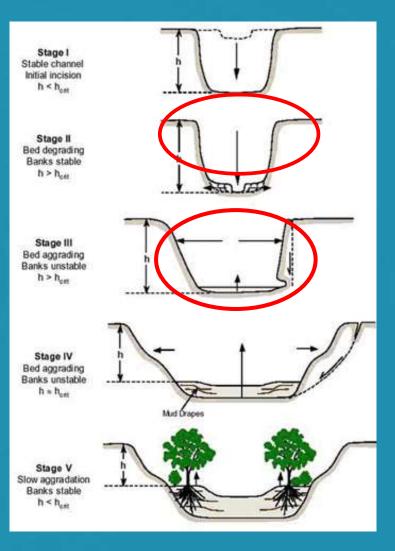
Richland-Chambers Watershed Partnership

STAKEHOLDER MEETING SEPTEMBER 20-21, 2016

Introduction TINA HENDON, TRWD



1800's


- > Onset of intensive agriculture
- > Heavy erosion from the land surface
- Deposition in the foot slopes, channels, floodplains.
- Result: poorly drained valley bottoms, flooding, and loss of crops.

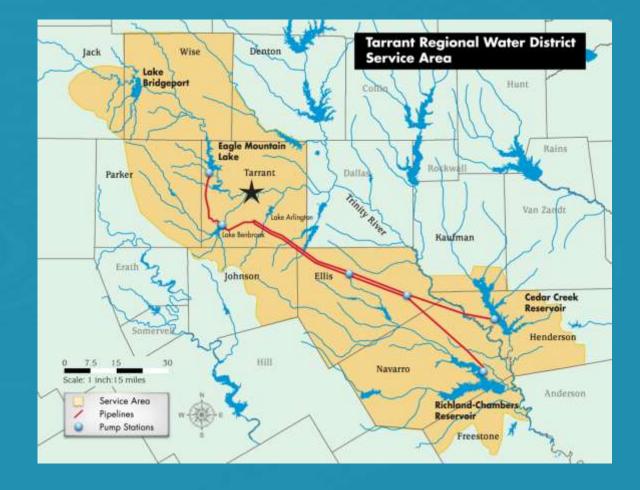
1950's – 1960's

- Soil Conservation Service was called in to prevent loss of cropland due to erosion and alleviate flooding.
- Large scale implementation of structural practices including,
 - > conservation practices, i.e. terracing, gully control,
 - > construction of 100's of flood water dams (PL-566),
 - structural improvement of over 78 miles of channels to enhance drainage of valley bottoms.
 - Levees to protect agricultural land

NRCS Watershed Programs (PL-566)

Watershed dam constructionUpland conservation practices

A little watershed history


1980's

StatisticsConstructed1982-1987Surface Area43,384 acresMax Depth86 ftShoreline:330 milesWatershed:1,957 sq. mi

A little watershed history

1980's to now

A little watershed history

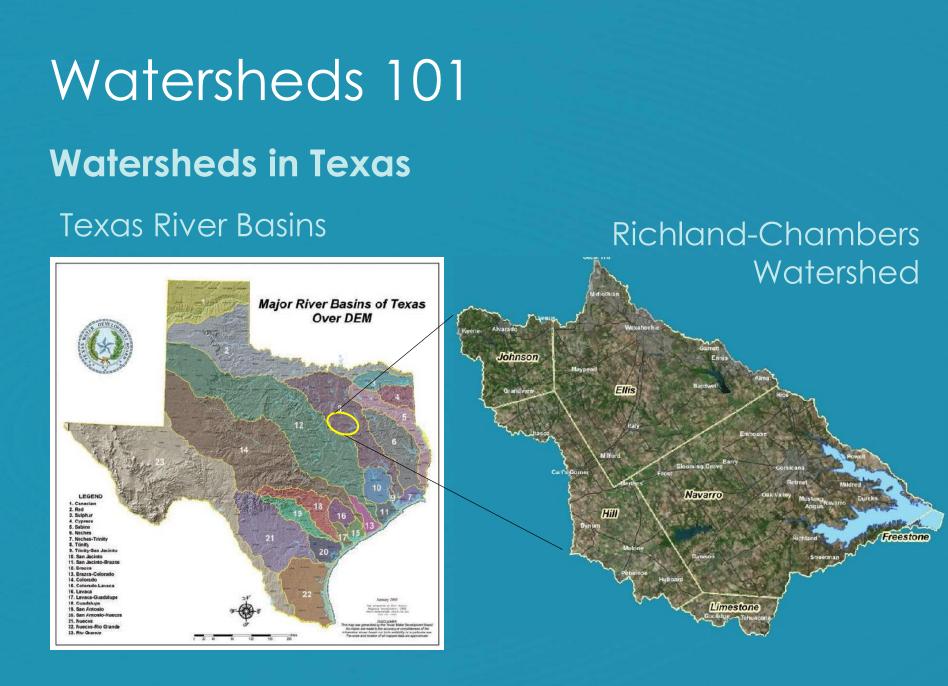
1980's to now

Richland-Chambers Reservoir A little watershed history Mill Creek Studies (1980's) Address erosion and sediment TRWD/SWCD Cooperative Agreement (1995) Cost-share BMPs and conservation practices in targeted areas North Central TX WQ Project (2003) Watershed planning for TRWD supplies Trinity River Restoration Initiative (2007) Updated modeling and analysis to better target problem areas Long-Term WQ Trend Study (2011) 20 year trends to determine changes in reservoir nutrient and chlorophyll-a concentrations National Water Quality Initiative (2012) Targeted NRCS Funding

INTRODUCTIONS

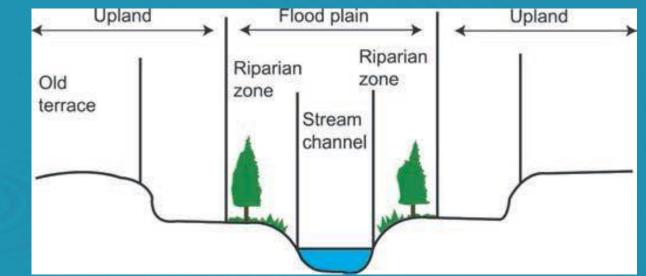
Midlothian

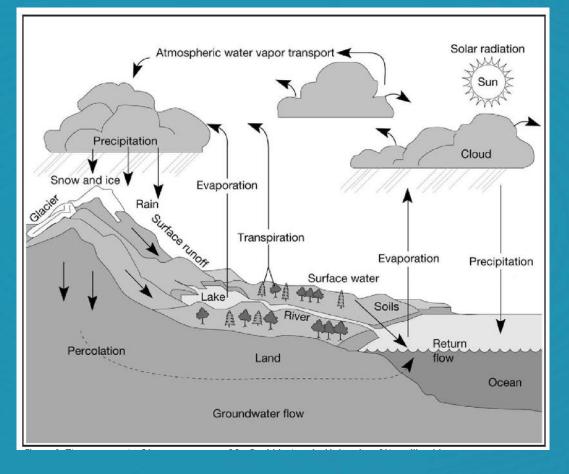
Richland-Chambers Watershed Partnership


STAKEHOLDER MEETING SEPTEMBER 20-21, 2016

Watersheds 101 MORGAN BUOB, TRWD

What is a Watershed?

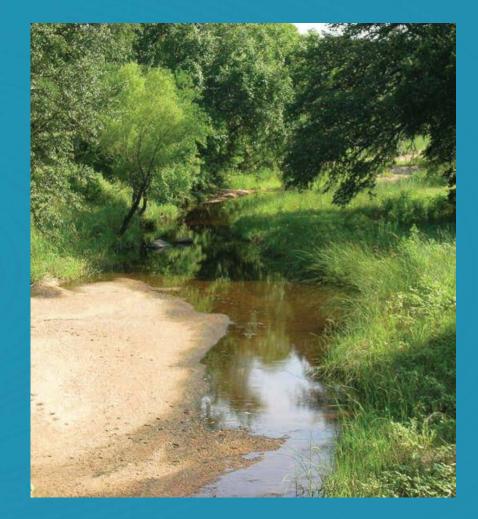

- Land area that drains into a common water body
- Surface water
- Ground water
- Soils
- Vegetation
- Wildlife
- Livestock



Natural Watershed Features

- Upland
- Floodplain
- Riparian Zone
- Stream Channel

Watershed Hydrology



Hydrological Functions

- Water Capture
- Water Storage
- Water Release

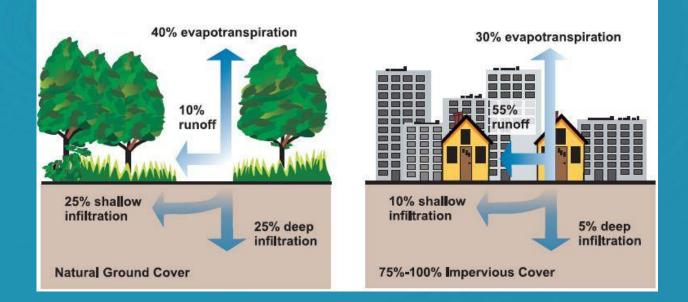
Ecological Functions

- Habitat for plants and animals
- Supports nutrient cycling and chemical transformations

Land Use = How land is used by humans

- Agriculture
- Industry
- Urban-Residential
- Recreation

Land Cover = biological or features of land


- Forests
- Grasslands
- Agricultural fields
- Rivers, lakes
- Buildings, parking lots

Where does rainfall go?

- ► Run off
- ▶ Infiltrate
- Taken up by plants
- Evapotranspiration
- Stored

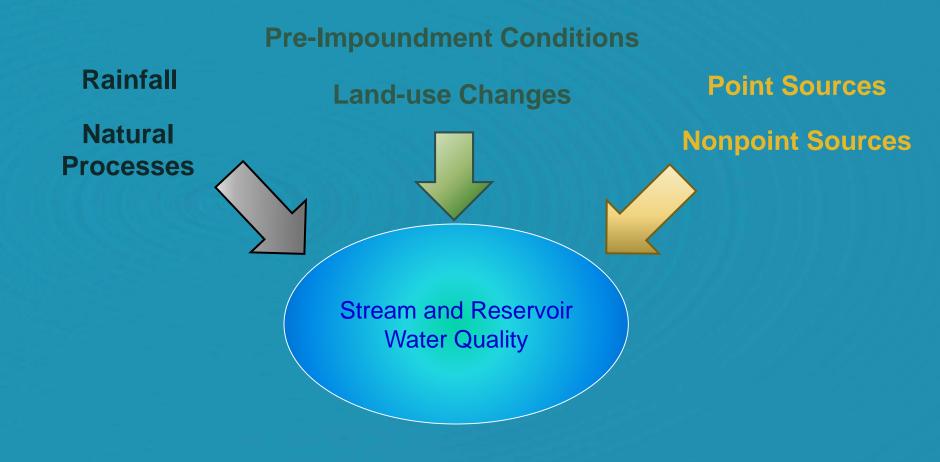
Human impacts

- Increased run off
- Less Infiltration
- Fewer plants
- Less evapotranspiration
- Less storage

Pollution: Contamination of air, soil, or water with harmful substances.

NONPOINT SOURCE

Human Impacts to Water Quality

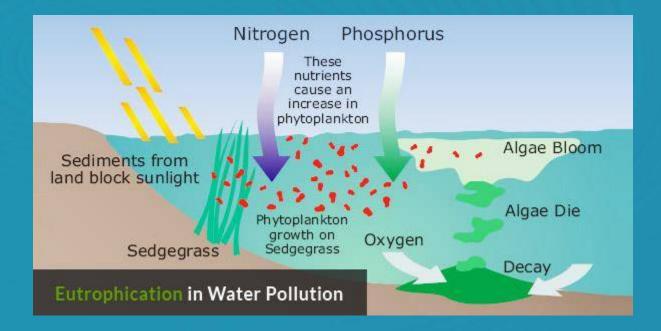

Point Source Pollution

discharged from a clearly defined, fixed point such as a pipe, ditch, channel, sewer or tunnel

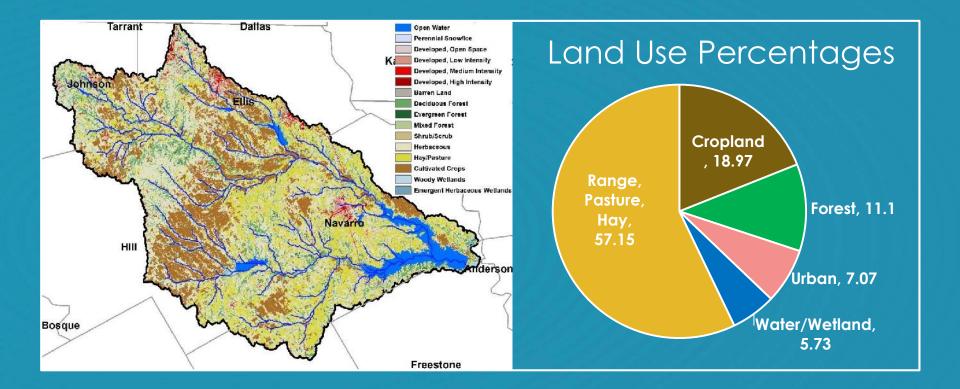
Non-Point Source Pollution

originates from many different places across the landscape, most of which cannot be readily identified.

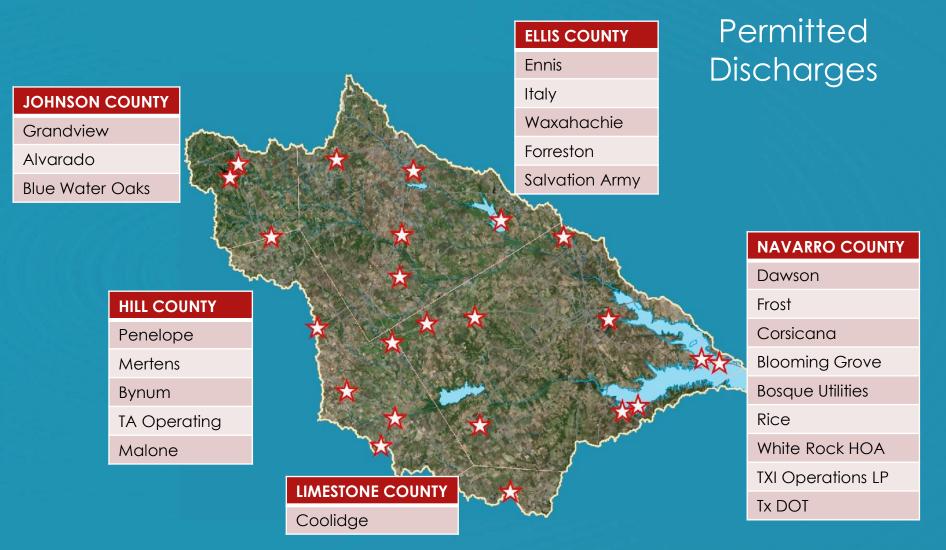
Watershed Effects on Water Quality


Impacts of typical Nonpoint Source Pollutants

POLLUTANT	NONPOINT SOURCE	IMPACTS
Bacteria	Livestock, pet waste, septic systems, and boat discharge.	Introduces disease-bearing organisms to surface water and ground water, resulting in shellfish bed closures, swimming restrictions, and contaminated drinking water.
Nutrients (phosphates & nitrates)	Fertilizers, livestock, pet waste, septic systems, suburban/urban development, and soil erosion.	Promotes algae blooms and aquatic weed growth which can deplete oxygen, increase turbidity, and alter habitat conditions.
Sediment (soil)	Construction, driveways, ditches, earth removal, dredging, mining, gravel operations, agriculture, road maintenance, and forest operations.	Increases surface water turbidity which in turn reduces plant growth and alters food supplies for aquatic organisms, decreases spawning habitat and cover for fish, interferes with navigation and increases flooding risk.
Toxics and Hazardous Substances	Landfills, junkyards, underground storage tanks, hazardous waste disposal, mining, pesticides/herbicides, auto maintenance, runoff from highways and parking lots, boats, and marinas.	Accumulates in sediment posing risks to bottom feeding organisms and their predators; contaminates ground and surface drinking water supplies; some contaminants may be carcinogenic, mutagenic and/or teratogenic and can bioaccumulate in tissues of fish and other organisms including humans.


Watersheds 101 Eutrophication

- Runoff of nutrients typically nitrogen or phosphorus
- Promotes excessive plant growth and decay


- Causes water quality problems
 - > Algae blooms
 - > Taste & odor problems
 - > Low dissolved oxygen

Watersheds 101 Richland-Chambers Watershed



Richland-Chambers Watershed

Challenges

- Increasing urbanization
- Intensive agricultural use
- Erodible soils

Impacts to Water Bodies

- Nutrient runoff Eutrophication
- > Erosion Sedimentation

Questions?

Richland-Chambers Watershed Partnership

STAKEHOLDER MEETING SEPTEMBER 20-21, 2016

Water Quality Management in Texas DARREL ANDREWS TRWD

Water Quality Management

Clean Water Act

- Applies to surface water
- Uses regulatory and non-regulatory tools
- reduce pollutant discharges (PS),
- manage polluted runoff (NPS)
- Many water quality programs are delegated to states

Implement Controls on Point and Nonpoint Sources

> Develop Watershed

Plans and

TMDLs

"restore and maintain the chemical, physical, and biological integrity of the nation's waters"

Establish Water Quality

Standards

Monitor & Assess Water Bodies

Identify Impaired & Threatened Waterbodies

Water Quality Management

Water Quality Standards

- State rules, defining how water bodies will be used and the acceptable quality
- Re-evaluated every 3 years
- Reviewed by EPA

✓ Designated Uses
 ✓ Criteria
 ✓ Antidegradation Policy

Quality Standards

Designated Uses

- Each waterbody is assigned one or more "designated uses."
 - Aquatic life
 - Contact Recreation
 - General
 - Fish Consumption
 - Domestic Water Supply
 - Other Uses

Water Quality Standards

Water Quality Criteria

Each designated use is supported by one or more "criteria."

Numeric Criteria

 Upper and/or lower limits for specific parameters, e.g.
 Dissolved Oxygen for Aquatic
 Life Use

Narrative Criteria

- Narrative description to protect aesthetics and designated uses
- Screening levels are numeric values used to evaluate narrative criteria, e.g.
 Chlorophyl-a for General Use

Monitoring


- Samples are collected by TCEQ and others under various programs.
- Data are included in centralized database

Assessment

- Statistics for each waterbody
- Sources of pollution
- Methods used in assessment
- Groundwater Assessment
- List of water bodies with "concerns"
- List of *impaired* water bodies those with samples that exceed the assigned criteria – also known as the 303(d) List

Identify Impaired & Threatened

WPPs and TMD<u>Ls</u>

Total Maximum Daily Load - TMDL

- the amount, or load, of a specific pollutant that a water body can receive on a daily basis and still meet the water quality standards
- Allocates load between nonpoint sources and point sources
- Single parameter per segment/water body
- Regulatory, must be approved by EPA
- Separate Implementation Plan recommends measures needed to restore water quality

Watershed Protection Plan

- Voluntary project to address complex water quality problems that cross multiple jurisdictions.
- Holistically address multiple sources of threats and impairments to surface and groundwater.
- Not regulatory

Implement Controls

Point Source Controls

- Discharges to waterbodies regulated and permitted by TCEQ
- Municipal, Industrial, and Confined Animal Feeding Operations
- Municipal stormwater from "Urbanized Areas"
- Limits may be tighter in watersheds with impaired or threatened water bodies

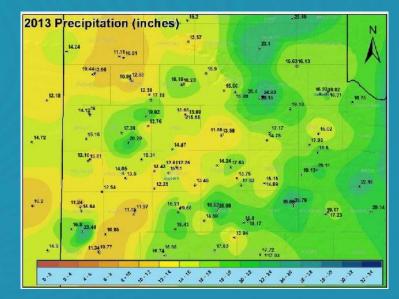
Nonpoint Source Controls

The Texas State Nonpoint Source Management Program encourages pollution control practices through educational, technical, and financial assistance provided by state and federal programs.

Other Agencies

Each agency has specific missions, goals, policies, and regulations that help protect water resources.

Natural Resources Conservation Service (NRCS) U.S. Army Corps of Engineers (USACE)


Other Agencies

Each agency has specific missions, goals, policies, and regulations that help protect water resources.

U.S. Geological Survey (USGS)

National Oceanic & Atmospheric Administration (NOAA)

Other Agencies

Each agency has specific missions, goals, policies, and regulations that help protect water resources.

Texas Commission on Environmental Quality (TCEQ)

Texas State Soil & Water Conservation Board (TSSWCB)

Other Agencies

Each agency has specific missions, goals, policies, and regulations that help protect water resources.

Texas Water Development Board (TWDB)

Texas Parks & Wildlife Department (TPWD)

Other Agencies

Each agency has specific missions, goals, policies, and regulations that help protect water resources.

Railroad Commission of Texas (RRC)

Texas Department of Agriculture (TDA)

Other Agencies

Each agency has specific missions, goals, policies, and regulations that help protect water resources.

Texas A&M Forest Service (TFS)

Texas Dept of State Health Services (DSHS)

Other Agencies

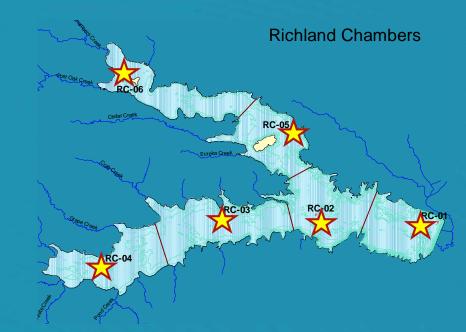
Each agency has specific missions, goals, policies, and regulations that help protect water resources.

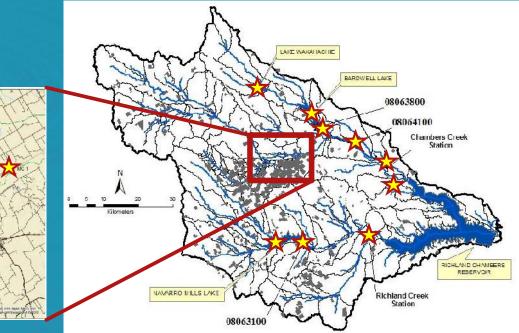
Texas A&M AgriLife Research Texas A&M AgriLife Extension

River Authorities

Water Quality Management Questions?

Richland-Chambers Watershed Partnership


STAKEHOLDER MEETING SEPTEMBER 20-21, 2016


Water Quality in Richland-Chambers Reservoir MARK ERNST, TRWD

Monitoring Program

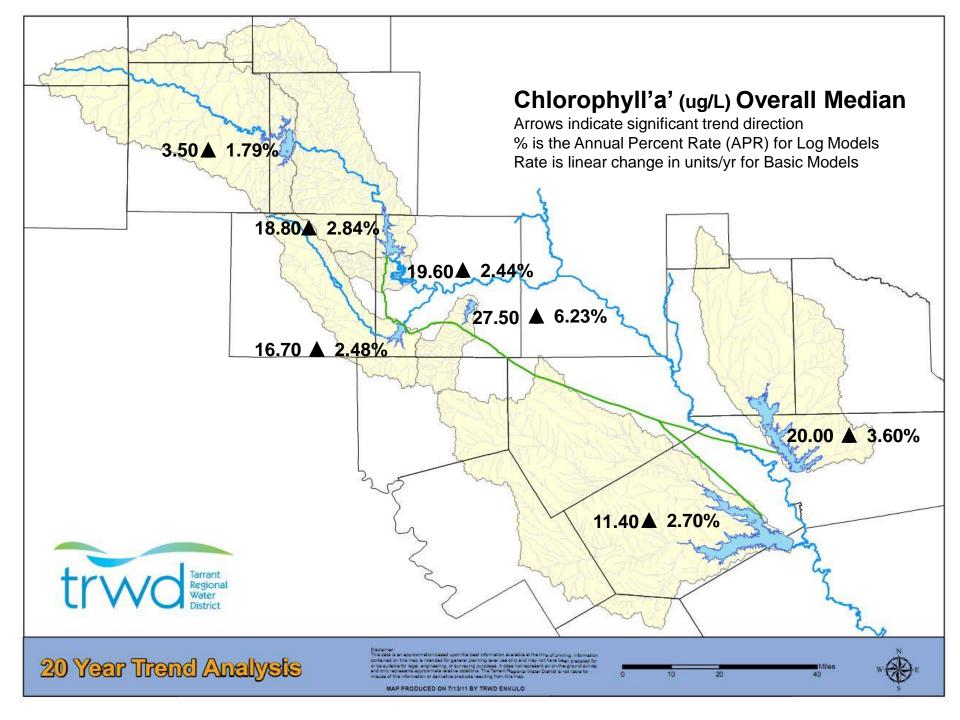
Sampling Sites

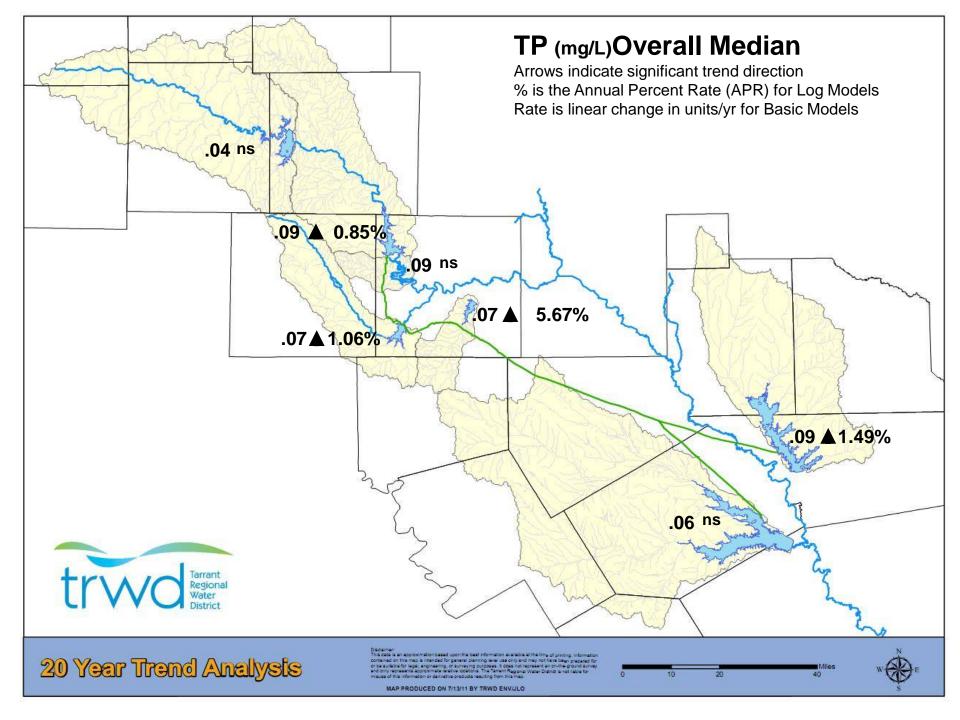
- ► Reservoir
- Tributaries

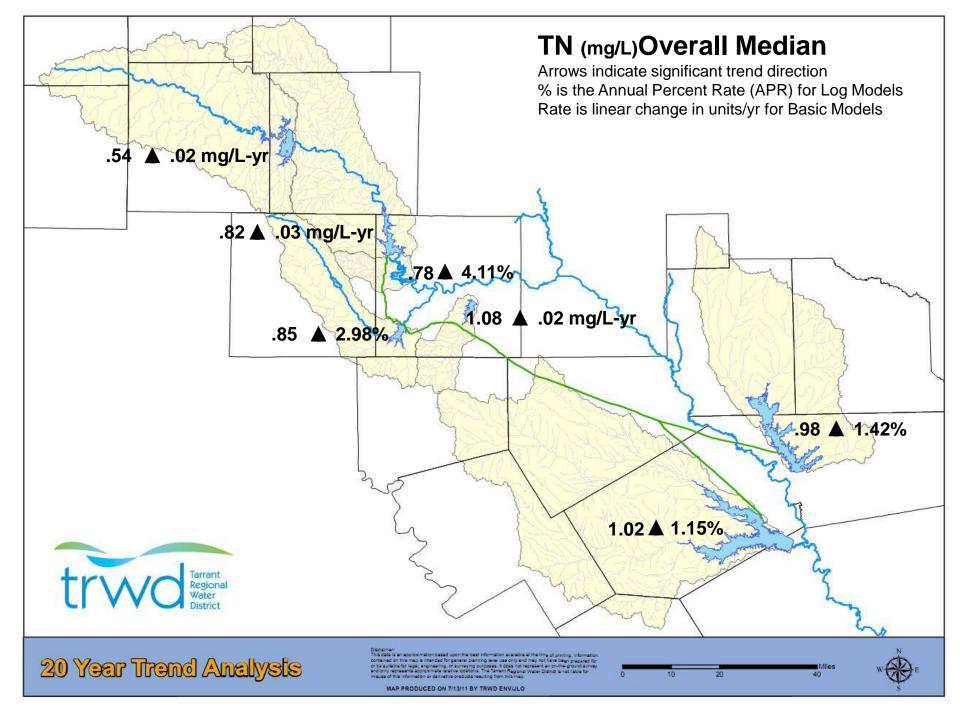
Monitoring Program

Sampling Objectives

- Reservoir quality
- Model inputs
- Capacity

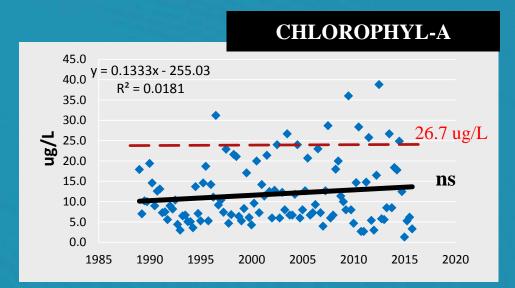

			WWTP				
		Tributaries	outfalls	Rainfall			
Reservoir Modeling & WQ Criteria							
Chl-a	Х	Х					
NH3-N	Х	Х	Х	Х			
NO3-N+NO2-N	Х	Х	Х	Х			
TKN	Х	Х	Х	Х			
TP-P	Х	Х	Х	Х			
OPO4-P	Х	Х	Х	Х			
E. Coli	Х	Х					
TDS	Х			Х			
Atrazine	Х	Х					
ТОС	Х	Х					
DOC	Х						
Alkalinity	Х			Х			
Chloride	Х	Х		Х			
Lake Sedimentation Rates							
TSS	Х	Х		Х			
VSS		Х					

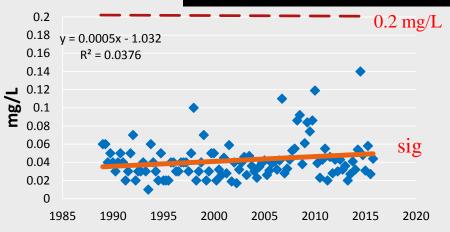

Monitoring Program


Sampling Objectives

- Customer water quality
- WWTP discharges

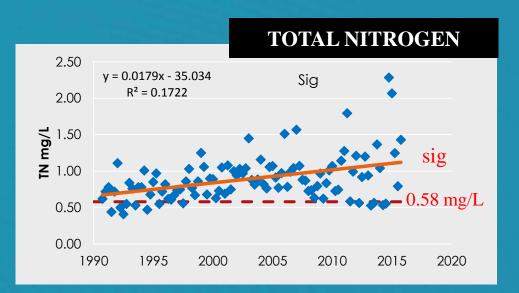
	Pipeline Intakes	WWTP outfalls				
Water Treatment Plants						
Fe	Х					
Mn	Х					
Calcium	Х					
Magnesium	Х					
Sodium	Х					
Potassium	Х					
Sulfate	Х					
Chloride	Х					
Bromide	Х					
Algae	Х					
Total Arsenic	Х					
Permit Compliance						
CBOD5		Х				
TSS		Х				
VSS		Х				
ТОС		Х				
E. Coli		Х				

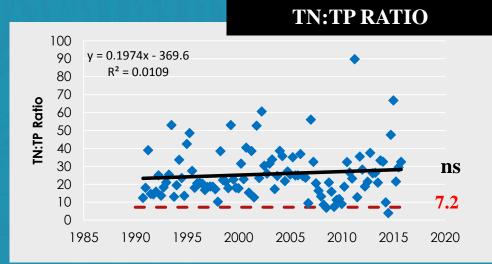



Reservoir Trends

- Sampling site near dam
- ► 1990 2015

- TCEQ Screening Levels
 - Chlorophyl- $\alpha = 26.7 \, \mu g/L$
 - ▶ Total-P = 0.20 mg/L


TOTAL PHOSPHORUS



Reservoir Trends

- Sampling site near dam
- ▶ 1990 2015

- TCEQ Screening Levels
 Total-N = 0.58 mg/L
- Limiting Nutrient Ratio
 TN:TP = 7.2

TCEQ Assessment Report

Johnson

Water Body	<u>N</u>	DO	<u>Chl-a</u>	<u>Chloride</u>
Chambers Creek			CS	Imp
Waxahachie Creek	CS			
Lake Waxahachie			CS	
Cedar Creek		Imp		
Post Oak Creek		CS		
Richland Creek		CS	CS	
Navarro Mills Lake		CS		
Grape Creek		CN		
Richland-Chambers Lake			CS	

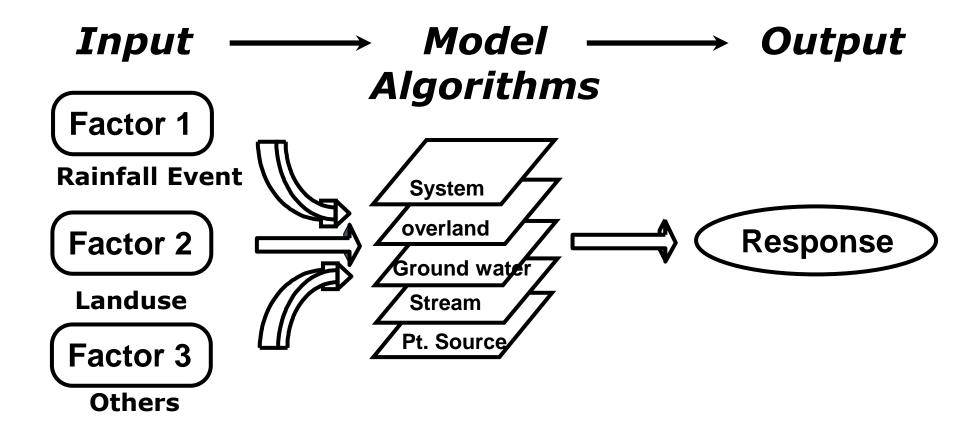
2014 TCEQ 305(b) Report; Imp = Impairment; CS = Concern based on screening levels CN – Concern based on criteria

Questions?

Watershed Model Richland-Chambers Watershed

R. Srinivasan and Essayas Kaba Texas A&M University Stakeholders meeting (September 20-21, 2016)

Outline


- •What is a model?
- •SWAT model
 - What it is does
 - •Input requirement
- Accounting for BMPs in Richlands-Chambers
 - Field level
 - Watershed level
- Evaluating our model

What is a Model

- A theoretical construct,
- Together with assignment of numerical values to model parameters,
- Incorporating some prior observations drawn from field and laboratory data,
- and relating external inputs or forcing functions to system variable responses

* Definition from: Thomann and Mueller, 1987

Nuts and Bolts of a Model

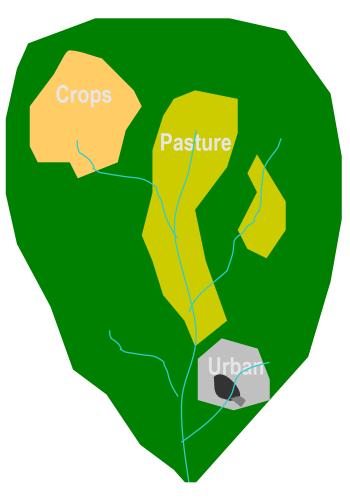
Is a Model Necessary? It depends on what you want to know...

Probably Not

- What are the loads associated with individual sources?
- Where and when does impairment occur?
- Is a particular source or multiple sources generally causing the problem?
- Will management actions result in meeting water quality standards?
- Which combination of management actions will most effectively meet load targets?
- Will future conditions make impairments worse?
- How can future growth be managed to minimize adverse impacts?

Probably

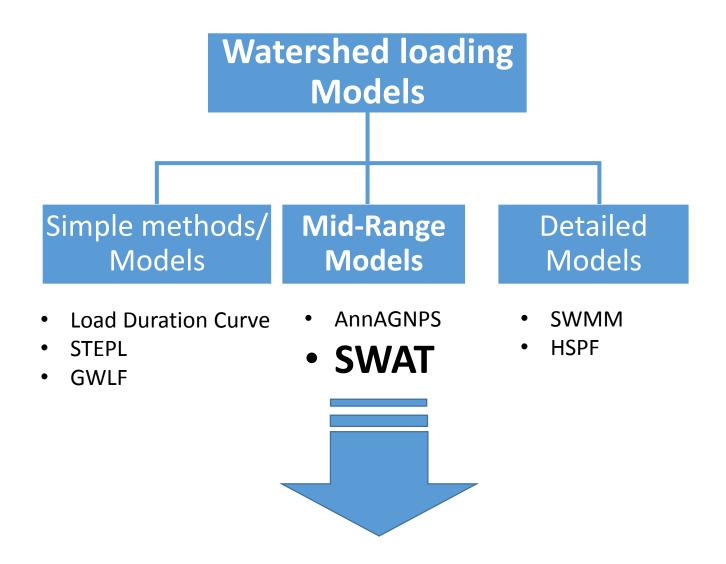
Models are used in many areas...


TMDLs, stormwater evaluation and design, permitting, hazardous waste remediation, dredging, coastal planning, watershed management and planning, air studies

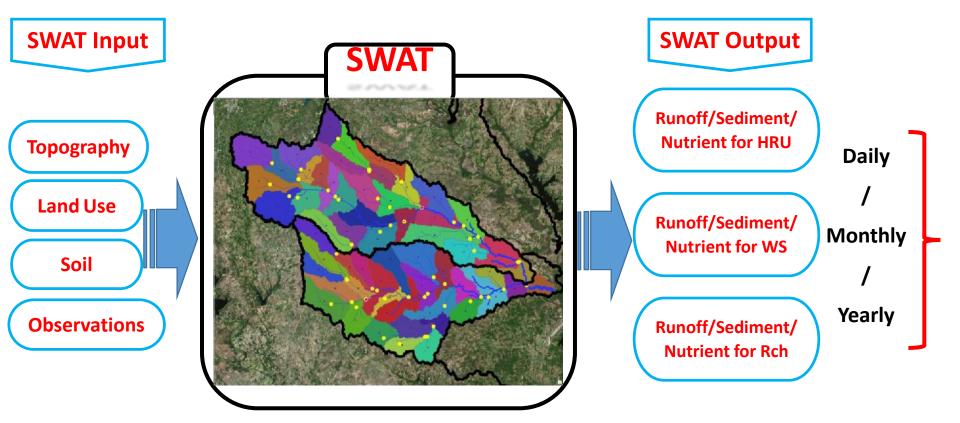
What models do:

- •Watershed models use a set of equations or techniques to analyze
 - *Rainfall/runoff:* The description of precipitation, infiltration, evaporation, and runoff
 - *Erosion and sediment transport:* The description of soil detachment, erosion, and sediment movement from a land area
 - **Pollutant loading:** The wash-off of pollutants from a land area
 - Stream transport: description of deposition, re-suspension, decay, and transformation within streams
 - **Management practices:** A management practice can be land-based (e.g., tillage or fertilizer application), constructed (e.g., stormwater ponds), or input/output to a stream(e.g., wastewater treatment).

Type of Models


- Receiving water models
 - Flow of water through streams and into lakes and estuaries
 - Transport, deposition, and transformation in receiving waters
- Watershed models
 - Includes Stream and landscape routing capabilities
 - Runoff of water and materials on and through the land surface and in streams

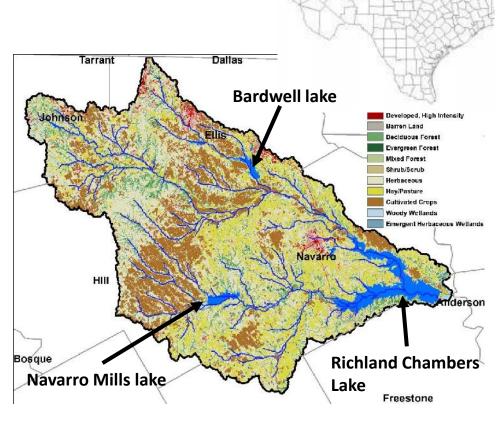
Who develops these models:


- •USDA-ARS
- •USCOE
- •USGS
- •US EPA
- •Other Federal Agencies
- Universities
- •Local state agencies

Watershed Models

SWAT in a Nutshell

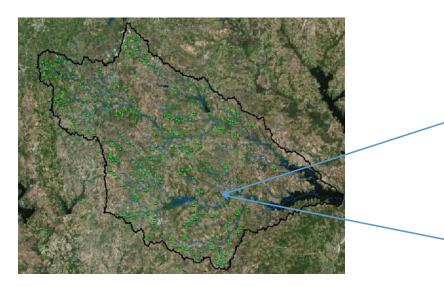
- •A river basin model used to predict
 - impact of land management practices on
 - Water/sediment/agricultural chemical yields



World_Imagery - Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Watershed characteristics

- Richland-Chambers Watershed
 - Area 5700 sq.km
 - Two HUC 8 watersheds

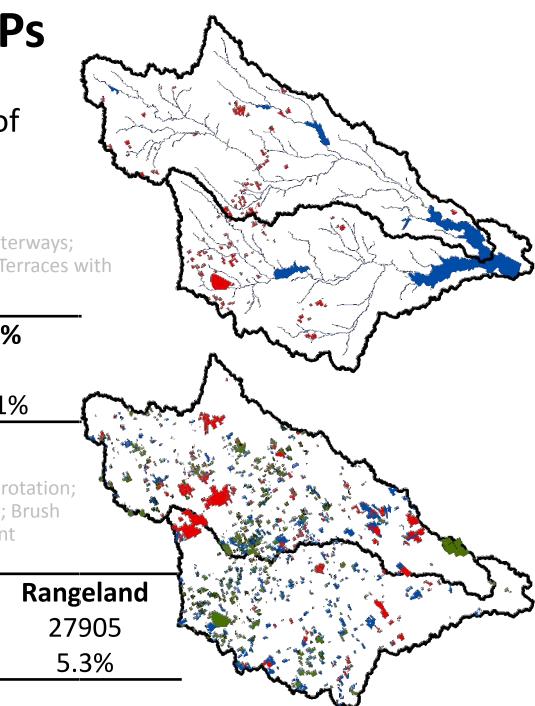

Agriculture	96222	19%
Forest	56390	11%
Water	29113	6%
Builtup	35872	7%
Range-Grasses	154222	30%
Pasture	121564	24%
Range-Brush	2689	1%

 Several BMPs implemented by USDA-NRCS to improve water quality

Data requirement

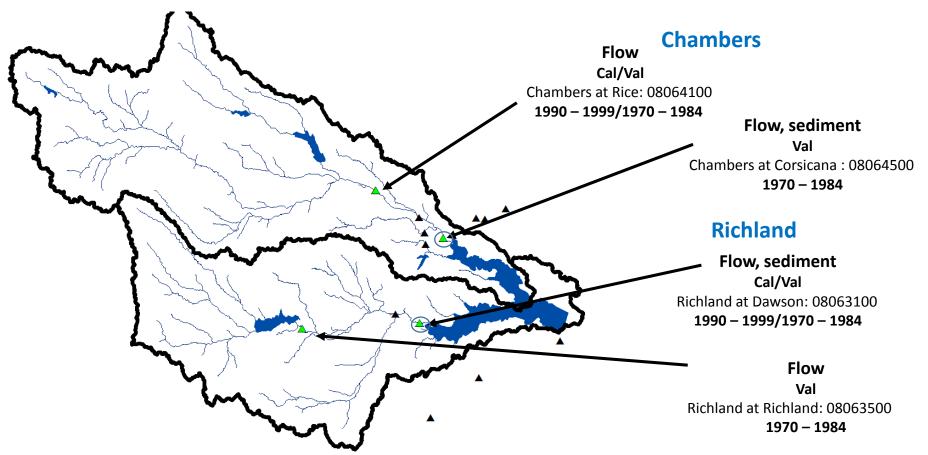
- Watershed characterization
 - USGS predefined Sub-watersheds and streams
- Land use land cover
 - USGS-NLCD and USDA-NASS combined
- Soils
 - NCRS-SSURGO soils
- Ponds and reservoirs
 - USDA-NRCS
 - Surface area
 - Volume

Accounting for BMPs

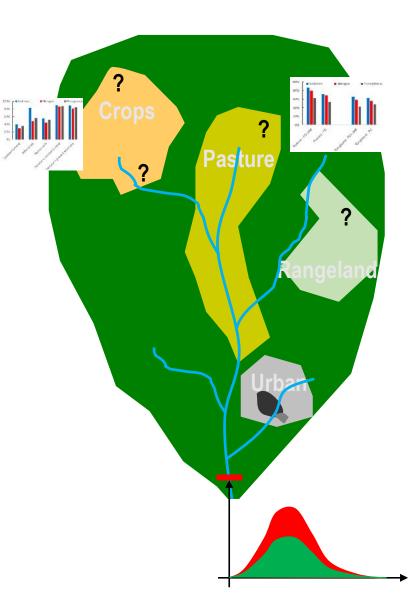

- Total BMPs applied on 20% of watershed
- Structural BMPs (in ha)
 - Contour Farming; filter strips; Grassed Waterways; Terraces; Terraces with Contour Farming; Terraces with Grassed waterways

	Area	%
Total watershed	507792	
Total BMPs applied	6767	1%

• Non Structural BMPs


 Residue Management; Conservation crop rotation; Nutrient management; Prescribed grazing; Brush management; Integrated pest management

	Cropland Pasture		Rangeland
BMP applied	43107	24228	27905
% Watershed	8%	4.6%	5.3%


Model evaluation

- A model verification step
 - How good is the model to represent a process on interest in our watershed?
 - Can the model be used to tell about the future?

Use on Richland-Chambers

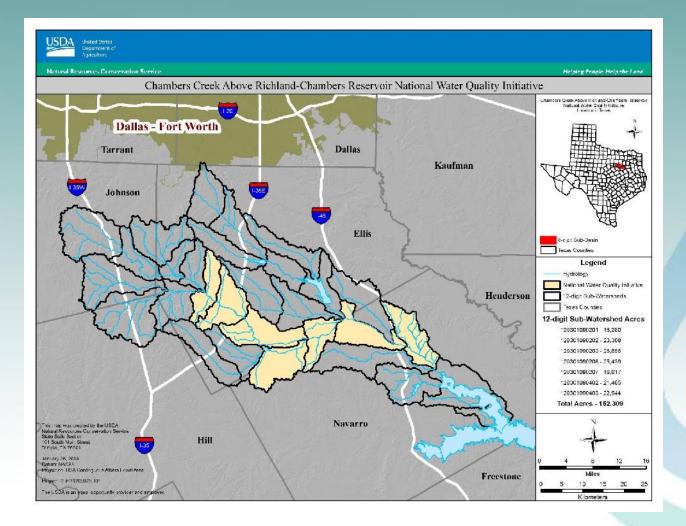
- •Can be used to
 - Evaluate how BMPs impact watershed process
 - Identify which BMPs are efficient
 - Assess cost effectiveness
 - Decide where to locate BMPs

Thanks

United States Department of Agriculture

Partnering for Progress

Beau Brooks NRCS District Conservationist Waxahachie, Texas

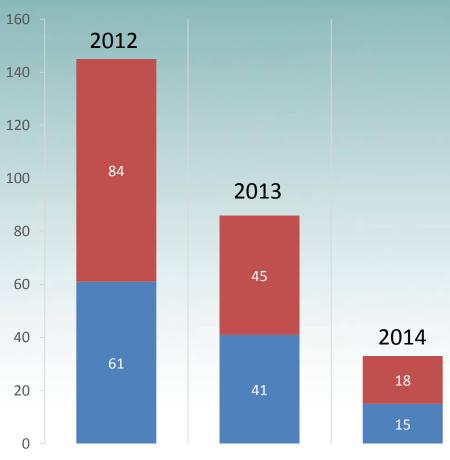


Working Together to Achieve More

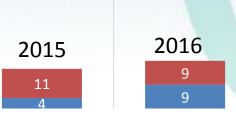
National Water Quality Initiative (NWQI)

Success through Partnerships

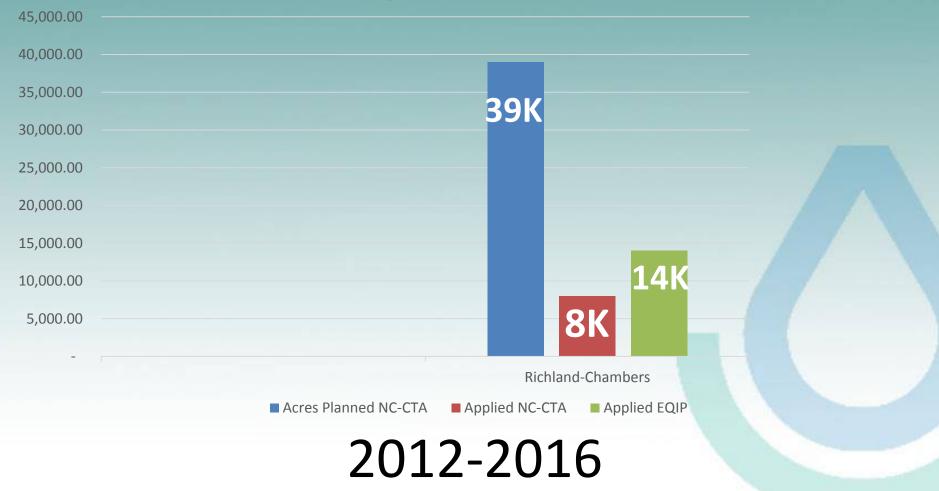




National Water Quality Initiative


CONTRACT APPLICATIONS VS. CONTRACTS FUNDED

Contracts Funded


Since 2012 \$6.9 million - NWQI EQIP \$400,000 – Miller-Coors \$300,000 – Tarrant Regional WD \$100,000 – Sand County Foundation 130 NWQI EQIP Contracts with more than 100 Producers 31,922 acres under EQIP contracts

Conservation Planning Assistance at Work

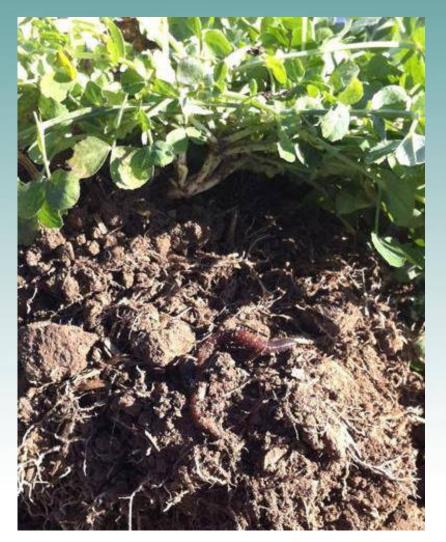
Acres Managed Under a Conservation Plan

Financial Assistance at Work

\$8,000,000.00	130 Conservation Plans written/ 130 Funded	
\$7,000,000.00 \$6,000,000.00 \$5,000,000.00 \$4,000,000.00 \$3,000,000.00 \$2,000,000.00	\$ 7.3M EQIP	
\$1,000,000.00		
\$- 	Programs Dollars Spent Richland-Chamber 2012-2016	ers

Chambers Creek NWQI (2016)

At-a-Glance

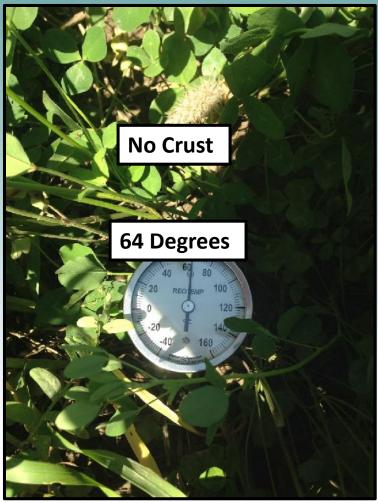

- Contracts 9
- \$320,000 in EQIP funding
- Acres 922

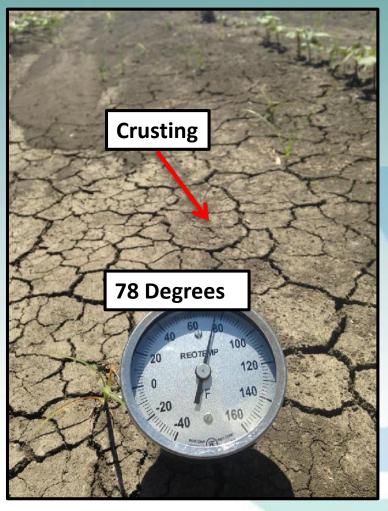
Typical Conservation Practices:

- Prescribed Grazing
- Residue & Tillage Management
- Cover Crop
- Forage & Biomass Planting
- Livestock Pipeline
- Herbaceous Weed Control
- Range Planting

Why Soil Health?

- Helps the bottom line
- Water cycle
- Nutrient cycle
- Harvesting solar energy
- Utilizing soil biology
- Building resilience


The Big Five


5 Principles to Improve Soil Health

- 1. Armor the soil
- 2. Minimize disturbance
- 3. Plant diversity (4 crop types)
- 4. Keep a living root year round
- 5. Proper livestock integration

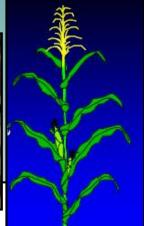
Armor vs No Armor Good Residue No Residue

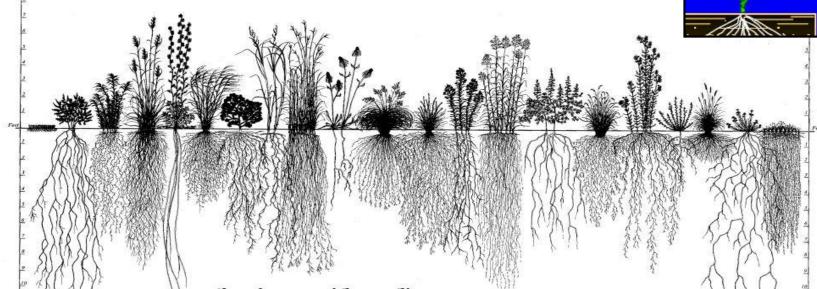
Minimal Disturbance Why is it important?

- Healthy Soils have "good" structure, balanced fungal/bacteria populations, plentiful earthworms, and organic matter.
- Tillage is like adding oxygen to a fire-the microbes burnup organic matter fast n' hot!

Large Blocks

Small Blocks


Crumb!



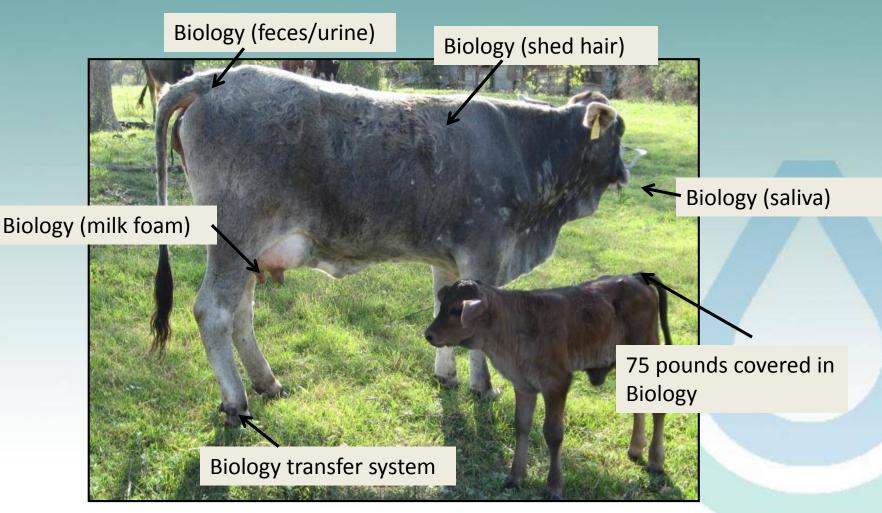
Plant Diversity-What is it?

- 4 Components to Plant Diversity
 - Warm season grasses
 - Warm season broadleaves
 - Cool season grasses
 - Cool season broadleaves

Living Root Year Round-What is it?

 Healthy Soils need living plants with Actively growing roots 365 days a year.

Nodulated Legume roots to fix Nitrogen


Fibrous Grass roots to build Structure

Brassica Tap roots to increase Porosity

Livestock Integration Why is it important? Biology!

Challenges for Implementing Successful Projects in the Future

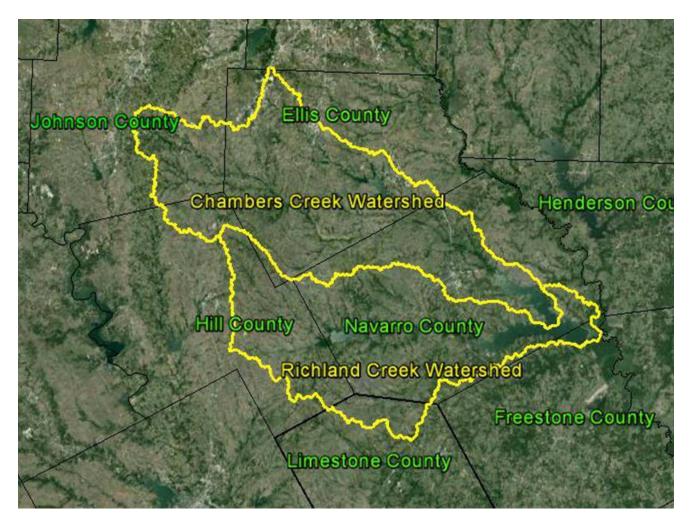
- The soil in the Blackland Prairie
- Staff to Monitor/Evaluate Projects
- Education for Land Owners
- Time to Build Relationships with Producers

Questions ?

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at <u>How to File a Program Discrimination Complaint</u> and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: program.intake@usda.gov.


Land Management in the Richland-Chambers Watersheds: Understanding the Landowner Perspective

Dr. Dianne A. Stroman Texas A&M, College Station, TX Department of Ecosystem Science and Management

Study Area

5 County Area Ellis Navarro Hill Johnson Limestone

2 Watersheds

Richland Creek Chambers Creek

~1.25 Million Acres

Methods/Materials

Survey Design

✓ 11 page mail survey, 113 questions

✓ Survey was divided into 4 main sections of inquiry

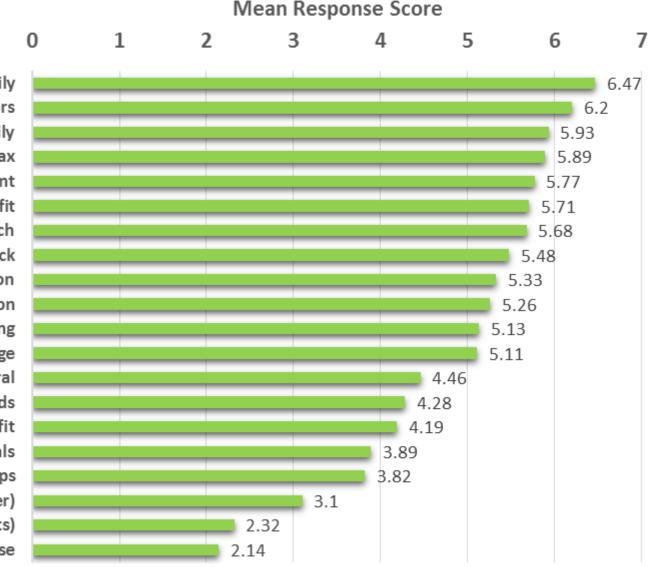
- ✓ Land management practices
- ✓ Land management information sources
 and conservation incentive programs
- ✓ Managing for species of special concern (Monarch butterflies and grassland birds)
- ✓ Landowner Characteristics

Survey administered over 5

months (January-May 2016)

≻595 Surveys mailed out

- Sent to landowners
- owning 50+ acres in 5
- county study area
- ► Received 242 returned
- questionnaires (196
- useable)



Participant Landowner Demographics

Demographic Variable	Survey Respondents
Age (years)	M=67 years;
Gender	
Male	77%
Female	23%
Formal education	and the second se
Some high school	< 1%
High school graduate/GED	13%
Some college	24%
Bachelor's degree or higher	62%
Residency on property	
Full-time resident	47%
Weekend/occasional resident	11%
Do not reside on property	42%
Proportion of income derived from rural property in 2015	
0%	16%
1-25%	64%
26-50%	7%
51-100%	13%
Location of rural property (% of landowners reporting hav	ing property within
the county)	
Ellis County	35%
Navarro County	45%
Hill County	7%
Johnson County	10%
Limestone County	9%

Participant Landownership motivations

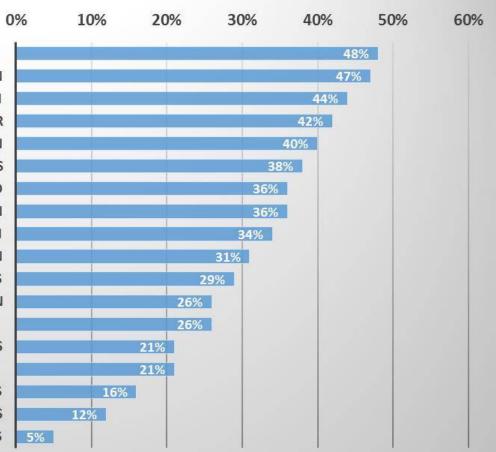
Leave land to my family Enjoy the outdoors Keep land in the family Place to relax Have a financial investment Earn a profit Operate farm/ranch Produce grazing livestock Maintain family farm/ranch tradition Non-hunting/fishing recreation Recreational hunting/fishing Produce hay/forage Manage for wildlife in general Manage upland game birds Sell land someday for profit Obtain income from minerals Cultivate crops Manage large wildlife (deer) Produce browsing livestock (goats) Operate a hunting enterprise

Mean response scores 1=not at all important, 4=moderately important, 7=very important

Participants Primary Management Objectives

50% raising livestock

23% Raising crops


23% Running a mixed operation

Preferred sources of land management information

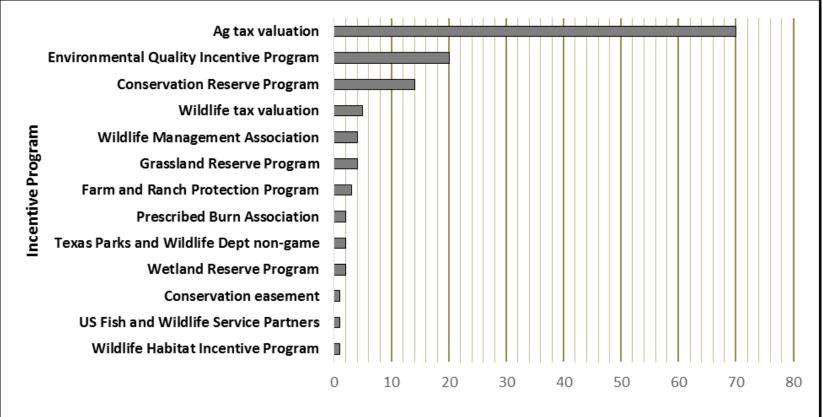
Information Source	Helpful? Yes No	Trustworthy? Yes No	Do Not Use Source
Friends	82% 7%	85% 2%	11%
Neighbors	80% 8%	81% 6%	12%
Family	71% 12%	78% 3%	17%
Agricultural retailers	64% 17%	58% 18%	19%
Internet sites	66% 11%	60% 13%	23%
News media/advertisements	42% 34%	30% 41%	24%
Texas A&M Agrilife Extension	65% 10%	67% 4%	25%
Natural Resources Conservation Service	64% 11%	65% 6%	25%
Public Meetings	57% 17%	59% 11%	26%
Texas Parks and Wildlife Department	44% 17%	50% 7%	39%

Reported land management activities in watershed benefitting water quality

USE A ROTATIONAL GRAZING SYSTEM FOR LIVESTOCK **IMPLEMENT A NUTRIENT (FERTILIZER) MANAGEMENT PLAN** MECHANICALLY REMOVE INVASIVE BRUSH **RESEED PASTURES TO IMPROVE VEGETATIVE COVER** IMPLEMENT ERODED AREA SHAPING AND REESTABLISH VEGETATION IMPLEMENT MINIMAL TILLAGE OR NO-TILL ON CROPLANDS PLANT COVER CROPS ON CROPLAND OR PASTURELAND ESTABLISH GRASSED WATERWAYS TO LIMIT SOIL EROSION IMPLEMENT A PRESCRIBED GRAZING MANAGEMENT PLAN TERRACE FIELDS TO REDUCE RUN-OFF AND SOIL EROSION CONVERT CROPLAND TO GRASS OR HAY FIELDS **REDUCE PHOSPHORUS (P) FERTILIZER APPLICATION RESTRICT LIVESTOCK FROM ACCESSING RIVERS/CREEKS/STREAMS** INSTALL GULLY PLUGS TO STABILIZE ERODED AREAS USE PRESCRIBED FIRE **USE VEGETATED FILTER STRIPS TO REDUCE SEDIMENT/NUTRIENT LOSS** PLANT VEGETATIVE RIPARIAN BUFFERS ALONG WATERWAYS

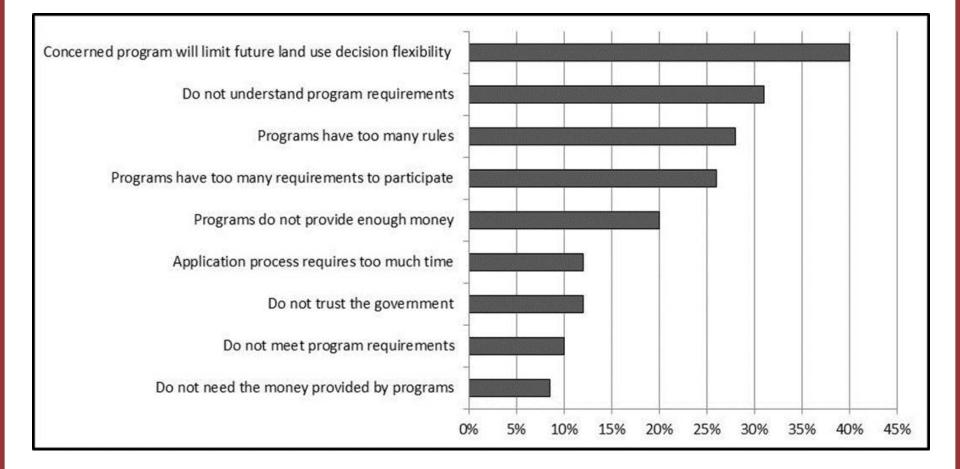
S A&M

CREATE ARTIFICIAL WETLANDS



Barriers to Land Management

Lack of Financial Resources	Lack of Knowledge
Implementing a nutrient management plan	Using rotational grazing system for livestock
Reducing Phosphorus	Implementing a prescribed grazing plan
Reseeding pastures to improve soil cover	Using gully plugs to stabilize eroded areas
Shaping/re-vegetating eroded areas	Applying prescribed fire
Cover cropping	Establishing riparian buffers
Planting grassed waterways to limit erosion	
Terracing fields to reduce erosion	
Establishing riparian buffers	
Planting filter strips	


Conservation incentive program participation in the Richland and Chambers Creek watersheds

% of landowners participating in conservation incentive programs

Yes

Why would you choose **<u>NOT</u>** to participate in a conservation incentive program?

Suggestions

→ Promote land management incentive and cost-sharing programs through social networking associations (WMA's and PBA's) and through local ag retailers

→ Connect landowners with locally-available technical guidance. Particularly about managing livestock and using prescribed fire

→ Facilitate landowner-driven social capital networks (e.g. wildlife management associations and prescribed burn associations) to increase collaboration and land management

Acknowledgements

United States Department of Agriculture Natural Resources Conservation Service

MillerCoors Water Stewardship and Sustainability Programs

It Takes Great Water to Make Great Beer

To Make Great Water Takes Great Responsibility

SUSTAINABILITY AT MILLERCOORS DEFINED:

MAKE A POSITIVE AND MEANINGFUL IMPACT ON THE SOCIAL, ENVIRONMENTAL AND ECONOMIC ISSUES THAT AFFECT OUR BUSINESS, EMPLOYEES AND OTHER STAKEHOLDERS

GREAT PEOPLE & COMMUNITIES

PROMOTE AND PROTECT THE RESPONSIBLE ENJOYMENT AND MARKETING OF OUR PRODUCTS

EMBED ENVIRONMENTAL STEWARDSHIP IN THE WAY WE OPERATE

EMPOWER OUR EMPLOYEES, SUPPLIERS AND COMMUNITIES

- Establish Local Water Conservation Programs that return more water annually back to the Environment than the brewery will use during the year.
- Drive water use numbers to 3.0 barrels of water to produce 1.0 barrel of beer at All Large Breweries (8)
- All Large Breweries (8) become third party certified "Landfill Free"

BY 2020:

RESTORE 100%

OF THE WATER USED IN OUR FINAL PRODUCTS IN WATER-STRESSED WATERSHEDS

BY 2020:

IMPROVE WATER-TO-BEER RATIO OF

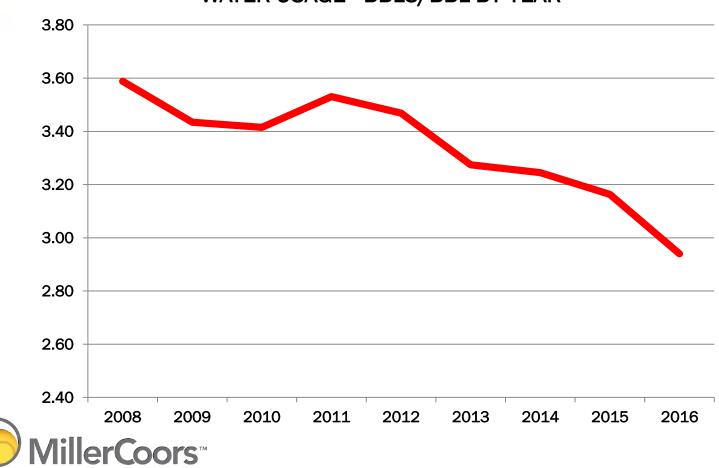
All Breweries

SAURG WATER 329-1 VEG

SAVED 1.7 BILLION GALLONS SINCE 2008 Fort Worth Brewery in 2016 is averaging 2.94:1 and has saved approximately 208,000,000 since 2008

WHY IS WATER IMPORTANT TO US ?

- It is a natural resource and requires an appropriate level of respect by the user
- It is becoming increasingly shorter in supply with each year
- Significant financial impact for both raw water purchases and waste water treatment
- It makes up roughly 96% of our product
- In addition, of all the water used by MillerCoors – 96% is for growing the Barley and Hops


- The Fort Worth Brewery purchased 687 million gallons of water last year (2015)
 - Compare to 900 million gallons in 2008
 - Down from 750 million gallons in 2014
- We return 63% of the water purchased back to the City after pretreatment to be reused.
- We understand our place and role in the community.

Brewery Numbers

 Approximately 24% Reduction in Water Purchased since 2008

WATER USAGE - BBLS/BBL BY YEAR

How Much Water Does It Take To Produce One Barrel of Beer ?

- For the Domestic Brewing Industry as a whole: <u>6 barrels</u> of water
- The European Beer Industry: Between 8-10 barrels of water
- The Fort Worth brewery: Currently at 2.94 barrels of water (Sept 2016)
 - NOTE: 2016 Plant KPI is 2.98 barrels of water

- Waste Water is pre-treated by brewery before return to the City of Fort Worth
- Waste Water is processed through a biological treatment system (anaerobic) to reduce overall "strength" of waste stream and lessen the load for the City's Village Creek Treatment Plant.
- We Return to the City 63% of the water we purchase.
- Biogas produced is utilized as gas makeup for boiler operations (Represents 15 to 25% of total gas needs.)
- After final treatment by the City, water can be reused or returned to the Trinity River.

BY 2020:

ACHIEVE ACH

OPERATIONS AT ALL MAJOR MANUFACTURING FACILITIES

Other Brewery Sustainability Successes

First Large Brewery – Certified Landfill Free by NSF International.

- Energy usage at the brewery has been reduced approximately 20% since 2010.
 - The Brewery has reduced energy usage by 11.8% YOY for 2016

HIGHLIGHTS

ALLÓ MAJOR BREWERIES ARE LANDFILL FREE

Our Strategy

"Look Beyond the Pipe"- To work outside the four walls of brewery to develop and implement water conservation programs at our water source

Our Plan

- Identify and engage public and private stakeholders in implementing water stewardship programs in the Trinity River basin
- Work with local and state government bodies/officials to gather information, share best practices, become a resource they can come
- Help develop, promote and adopt public policy measures in support of our water stewardship efforts

131 LANDOWNERS 31,000 ACRES 79 BILLON CANONS

Since 2012

- Joint project with NRCS and local SWCDs announced May 2012
- \$9 million + in financial assistance
- There are 131 different land owners and over 31,000 acres
- Conservation practices that benefit water quality and soil health

Richland Chambers Watershed

Chambers Creek Watershed

Waxahachie

Mill Creek Watershed

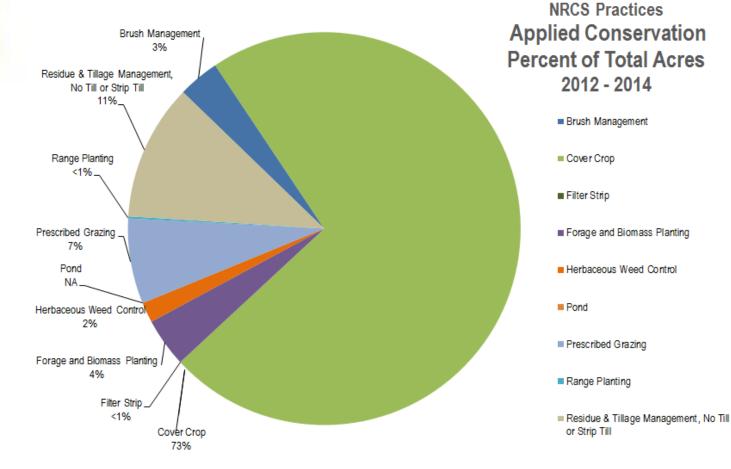
bing

Alvarado

35

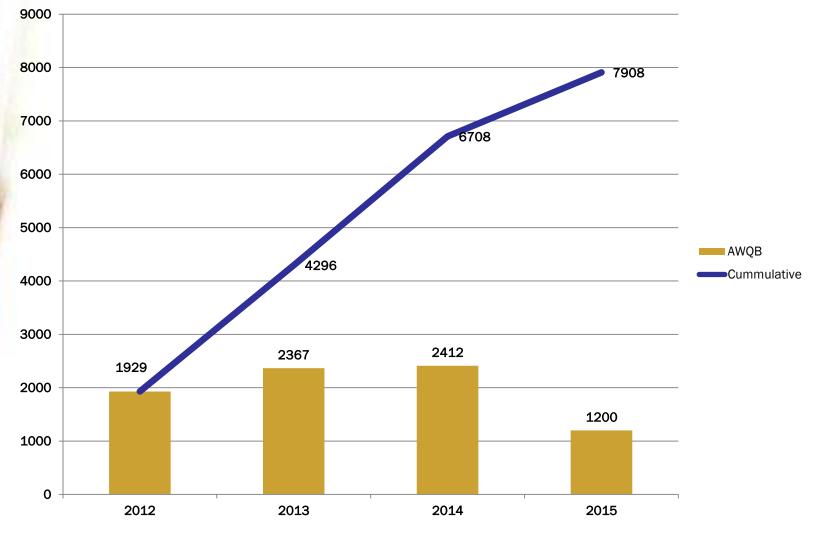
Richland Creek Watershed 45

Corsicana


Hubbard

National Water Quality Initiative/MillerCoors

- In 2014, MillerCoors began to quantify the impact of these best practices.
- Utilizing a Replenish Benefit Calculation
 - Curve Number Runoff method Soil and Water Assessment Tool (SWAT)
- In the four (4) years we have been a part of a program that returned almost 8.0 Billion gallons of water back to the watershed.


NWQI - Applied Conservation Practices

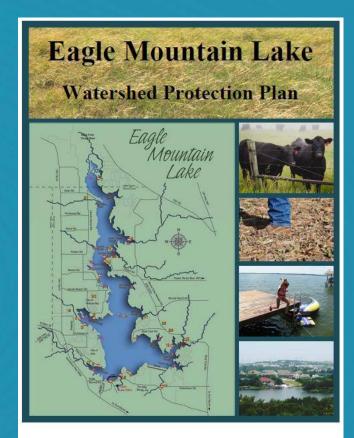
National Water Quality Initiative

Annual Water Quantity Benefit (Mgal/yr)

Trinity River Trash Bash

- Once per year the Brewery hosts a Watershed Happy Hour.
- The invite list is extensive.
 - NGOs
 - Local, State and Federal Agencies and Officials
 - Soil Conservation and Water Districts
 - Volunteers
 - Landowners
 - Business Representatives
- Last year's attendance was approximately 116
- Great time to share and make new connections.
- Listen Learn and Collaborate over a beer

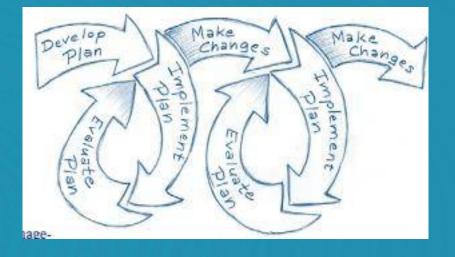
Watershed Happy Hour



Richland-Chambers Watershed Partnership

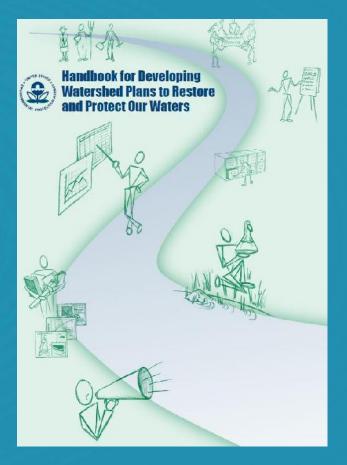
STAKEHOLDER MEETING SEPTEMBER 20-21, 2016

A strategy that provides assessment and management information for a defined watershed.


- EPA Framework
- Clean Water Act §319
- Stakeholder involvement
- Actions supported by sound science
- Technical expertise
- Diverse skills & knowledge
- Focus on water quality goals

2016

Steps to Effective Watershed Management


- 1. Build partnerships
- 2. Characterize your watershed
- 3. Establish goals & identify solutions
- 4. Develop an implementation program
- 5. Implement your plan
- 6. Measure progress & make adjustments

The outcomes of this process are documented or referenced in a watershed plan.

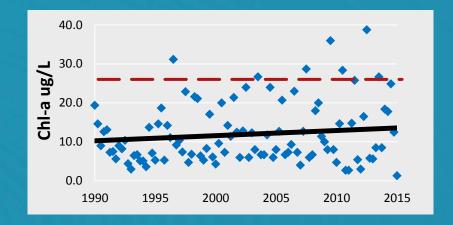
Nine Elements of a Successful Watershed Plan

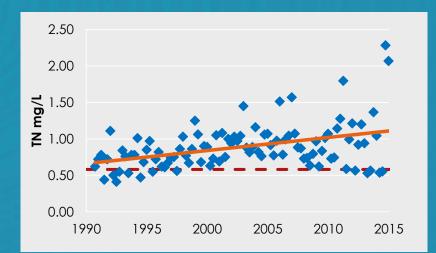
- A. Identify problem & sources
- B. Reductions needed to reach goals
- C. Identify measures needed to achieve reductions
- D. Assistance needed
- E. Education & outreach plan
- F. Schedule
- G. Milestones
- H. Criteria for measuring progress
- I. Monitoring Plan

		"Nine Elements"								
		A	В	С	D	Е	F	G	Н	
Planning process	Build Partnerships									
	Characterize Watershed	Х								
	Goals and Solutions		Х	Х						
	Implementation Program				Х	Х	Х	Х	Х	Х
	Implement the Plan									
	Measure Progress & Make Adjustments									

Element A: Watershed Characterization

- Possible causes of problem
- Possible sources of pollutants
- Quantify pollutants

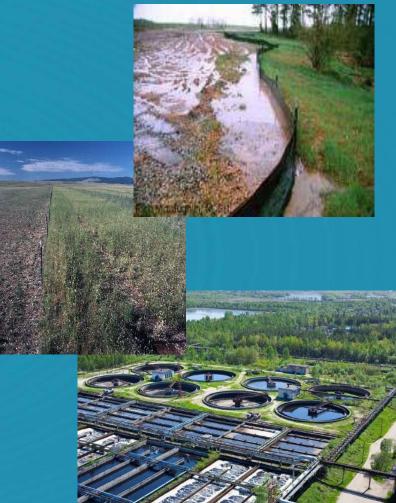

Watershed Protection Plans Identify Goals and Solutions


Element B: Pollutant Reductions

What is the water quality goal?

- How much of the target pollutant is acceptable?
 - "Impaired" waterbody
 - healthy waterbody

How much can be reduced by the recommended actions?



Watershed Protection Plans Identify Goals and Solutions

Element C: Management Measures

- Related to sources identified in previous steps
- Identify critical areas
- Economically feasible

Watershed Protection Plans Implementation Program

Element D: Assistance Needed

Technical

- Sources and types
- Financial
 - Cost of the project
 - Potential sources
 - Estimated contributions

Watershed Protection Plans Implementation Program

Element E: Education & Information

Target relevant audiences

Inform and engage

Support management activities

Mass Media Demonstration sites Meetings and workshops Onsite technical assistance Citizen monitoring programs Training and certification programs

Watershed Protection Plans Implementation Program

Element F: Schedule

- Project timeline
- Relate tasks to goals
- Responsible organizations
- When goals will be met

Element G: Interim Milestones

- More detailed than Schedule
- Management activity-specific
- Allows closer monitoring of progress

Management Measure	Jurisdiction	Unit Cost	Imp	lumbe olemen Year	Total Cost						
			1-3	4-6	7-10						
Urban Stormwater Management Measures											
Pet Waste Collection Stations	Bellville, Burton, Brenham, Industry	\$620/station \$85 annual/station	6	3	3	\$17,640					

Watershed Protection Plans Implementation Program

Element H: Criteria for Load Reductions

- Assess progress toward water quality goals
- Assess effectiveness of mangement measures
- Adaptive management

Element I: Monitoring

Sampling & analysis plan
 Supports decision-making
 Reporting schedule

		"Nine Elements"									
		A	В	С	D	Е	F	G	Н		
Planning process	Build Partnerships										
	Characterize Watershed	Х									
	Goals and Solutions		Х	Х							
	Implementation Program				Х	Х	Х	Х	Х	Х	
	Implement the Plan										
	Measure Progress & Make Adjustments										

Watershed Protection Plans Questions?

Richland-Chambers Watershed Partnership

STAKEHOLDER MEETING SEPTEMBER 20-21, 2016

Role of Stakeholders

The Role of Stakeholders Who is a Stakeholder?

People and organizations that have a stake in the outcome of the watershed protection plan

General Public Municipalities and Counties Regulated Entities Industry Resource Managers Agriculture Environmental Developers Landowners

The Role of Stakeholders Stakeholder Groups

- Balanced representation from groups
- Manageable size for decision-making purposes
- All stakeholders provide input

The Role of Stakeholders Stakeholder Roles

- Represent Respective Constituencies
- Participate in the analysis of water quality issues
- Contribute ideas to WPP creation and implementation
 - Evaluate options for managing pollutants offered by research team
 - Suggest alternative management measures
 - Integrate existing programs or plans into the WPP
 - Provide input on various other components

The Role of Stakeholders Stakeholder Responsibilities

- Assist in the development of recommendations to reach water quality goals
- Make recommendations of management practices that can be implemented to correct nutrient and sediment loading into the reservoir
- Implement best management practices outlined in the WPP in order to preserve/improve water quality and accomplish the goals of the WPP

The Role of Stakeholders Agency Roles

Texas AgriLife Research

- Recruit and organize stakeholders
- Organize funding structure for development and implementation
- Write Watershed Protection Plan document

Texas AgriLife Extension Service

- Provide technical support to stakeholders
- Develop and deliver educational programming
- Tarrant Regional Water District
 - Technical support for reservoir/watershed issues
 - Conduct water quality modeling and monitoring

The Role of Stakeholders Agency Roles

Texas Commission on Environmental Quality (TCEQ)

- Regulates/ permits point source pollutants
- Funding for planning/educational & implementation programs
- Review watershed protection plans

Texas State Soil and Water Conservation Board (TSSWCB)

- Responsible for managing programs for the abatement of agricultural, and silvicultural non-point source pollutants
- Technical Support for agricultural producers via local Soil and Water Conservation Boards
- Funding for planning/educational & implementation programs
- Review watershed protection plans

The Role of Stakeholders Agency Roles

USDA- Natural Resource Conservation Service

- Technical Support for agricultural producers
- Funding for implementation of best management practices

US Environmental Protection Agency (USEPA)

- Provides funding
- Guidance for planning
- Review of Watershed Protection Plan

The Role of Stakeholders What is expected?

Successful development and implementation of the watershed plan will depend on the involvement of the community.

The Role of Stakeholders What is expected?

1. Be part of the Partnership

The <u>Richland-Chambers Partnership</u> is the forum for public participation in the planning process.

2. Serve as a Steering Committee member

The role of the <u>Steering Committee</u> is to affirm the consensus of the Partnership and facilitate the development and implementation of the watershed plan.

Next Steps CLINT WOLFE

Stakeholder input

Brainstorming ideas about water quality priorities, threats, existing programs, etc.

Stakeholder input

- What programs do you, or your organization, help with that protect water quality?
 - ► Agricultural, Urban...
 - ▶ Clean-ups...
 - ► Volunteering...
 - Education...

What others do you know about?

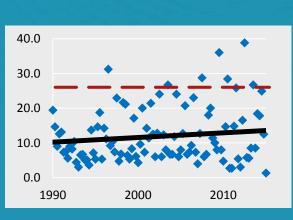
Stakeholder input

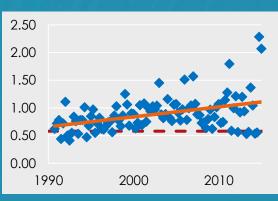
Besides drinking, why is water important to you?

- Swimming, boating...
- ► Fishing, wildlife viewing...
- Economic importance, industry, agriculture...
- General environmental health
- Aesthetics, makes you feel good

Stakeholder input

Have you observed activities in your community that you think might threaten water quality?


- Construction/land disturbance
- Farming/grazing practices
- Dumping/littering
- Other?


Stakeholder input

What are your water quality priorities?
 Improving only the worst water bodies...

- Meeting regulatory requirements...
- Protecting good water from going bad...
- Others?

