North Central Texas Water Quality Project Richland-Chambers Reservoir Watershed Protection Plan

Stakeholder Meeting Waxahachie, Texas

AGENDA

Tuesday, April 25, 2017

- 9:30 Refreshments and Sign-in
- 10:00 Welcome and Introductions *Clint Wolfe, Program Manager Texas A&M AgriLife Research*
- 10:10 Recap Last Meeting and Watershed Protection Plan Development Activities *Clint Wolfe, Program Manager Texas A&M AgriLife Research*
- 10:20 Water Quality in the Richland-Chambers Watershed Mark Ernst, Environmental Manager, Tarrant Regional Water District
- 10:40 Setting Water Quality Goals *Tina Hendon, Tarrant Regional Water District*
- 11:00 BREAK
- 11:10 Use of Water Quality Models and Review of Preliminary Results Essayas Kaba and Dr. Srinivasan, Texas A&M Spatial Sciences Lab
- 11:30 MS4 Stormwater Permitting and Renewal of Small MS4 General Permit Hanne Nielsen and Lindsay Garza TCEQ Stormwater & Permitting Staff
- 12:00 LUNCH
- 12:45 2017 National Water Quality Initiative and the Chambers Creek Partnership Kyle Wright, Natural Resource Manager,, USDA Natural Resources Conservation Service
- 1:05 Overview of Wastewater Study Darrel Andrews, Tarrant Regional Water District
- 1:20 Overview of Economics Analyses Darrel Andrews, Tarrant Regional Water District
- 1:35 BREAK
- 1:45 Steering Committee and Draft Guidelines Clint Wolfe, Program Manager Texas A&M AgriLife Research
- 2:15 Discussion
 - Timeline and Next Steps in WPP Development
 - Time and Objectives for Next Meeting, May 24th
- 2:45 ADJOURN

Richland-Chambers Watershed Partnership

STAKEHOLDER MEETING April 25, 2017

Welcome and Introductions CLINT WOLFE, TEXAS A&M AGRILIFE RESEARCH

Recap of Previous Meeting CLINT WOLFE, TEXAS A&M AGRILIFE RESEARCH

Richland-Chambers Watershed Watershed History

Johnson

Ellis

Hill

Navarro

Limestone

1800's Intensive agriculture results in erosion of land and streams, deposition in lower areas.

1950's – 60's Soil Conservation Service
- conservation practices,
- structural improvements,
- flood water dams (PL-566), and
- rechannelized some streams.

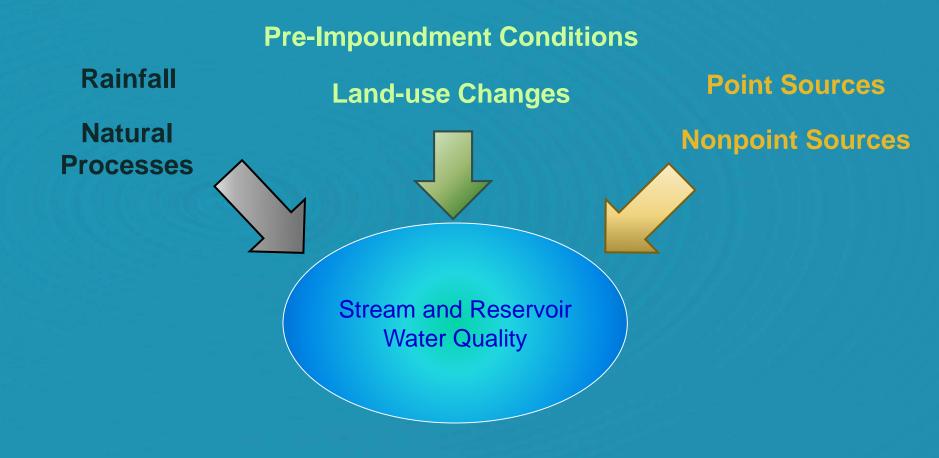
1980's Richland-Chambers Reservoir was built

Richland-Chambers Watershed Watershed History

Today

- > Improved technologies and agricultural management practices.
- New pressures include land use changes and urban development.
- > Landscape and stream erosion still persists in the watershed.

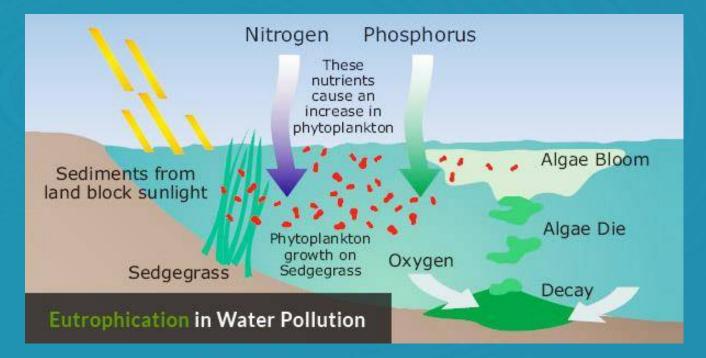
Richland-Chambers Watershed Watershed History


Today

 Richland-Chambers reservoir supplies almost half the drinking water for over 2 million people.

Watersheds 101

Watershed Effects on Water Quality


Watersheds 101

Eutrophication

- Excessive nutrient inputs -Nitrogen or Phosphorus
- Promotes excessive plant growth and decay

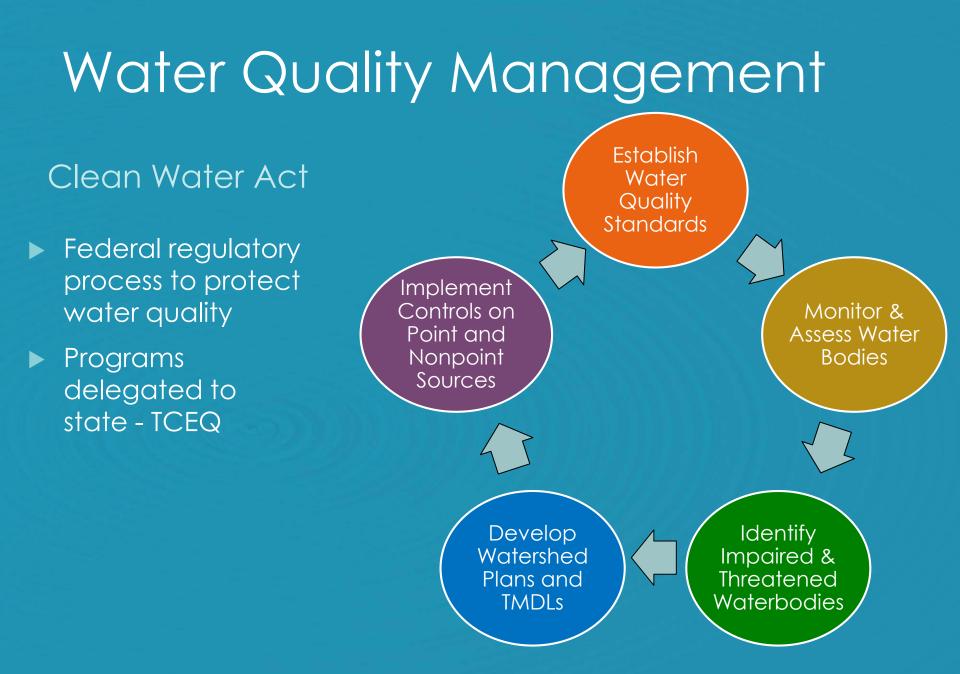
Causes water quality problems

- > Algae blooms
- Taste & odor problems
- Low dissolved oxygen

Watersheds 101

Human Impacts to Water Quality

Point Source Pollution



from a clearly defined, fixed point such as a pipe, ditch, channel, sewer or tunnel

Non-Point Source Pollution

from many different places across the landscape, most of which cannot be readily identified.

Options for Improving WQ

Total Maximum Daily Load - TMDL

- Allocates load between nonpoint sources and point sources
- Single parameter per segment/water body
- Regulatory, must be approved by EPA

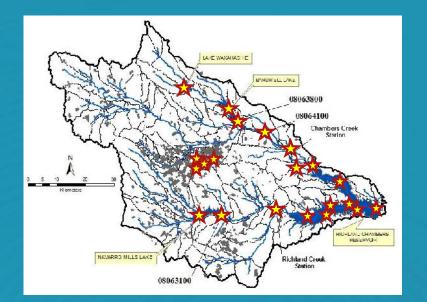
Watershed Protection Plan

- Voluntary
- Addresses complex issues
- Includes multiple jurisdictions
- Addresses multiple sources

9 Elements of a WPP

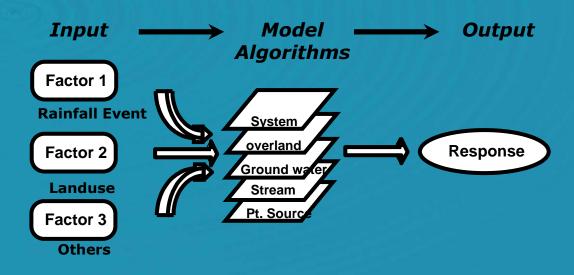
- A. Identify problem & sources
- B. Reductions needed to reach goals
- C. Identify measures needed to achieve reductions
- D. Assistance needed
- E. Education & outreach plan
- F. Schedule
- G. Milestones
- H. Criteria for measuring progress
- I. Monitoring Plan

WPP Development Activities


	Elements of a WPP Document									
		А	В	С	D	Е	F	G	Н	I
Planning process	1. Build Partnerships									
	2. Characterize Watershed	X								
	3. Goals and Solutions		X	X						
	4. Implementation Program				X	X	X	x	X	X
	5. Implement the Plan									
	6. Measure Progress & Make Adjustments									

1. Building Partnerships Stakeholder Groups

- Balanced representation from various sectors
- Manageable size for decision-making purposes
- All stakeholders provide input
- Contribute ideas to WPP development and implementation
- Implement practices and activities in the WPP in order to accomplish the goals of the WPP



2. Characterizing Watershed

Sampling ProgramsTCEQTRWD

Modeling and Analysis

3. Identifying Goals and Solutions

Begin discussion of Goals today Workshop on Best Management Practices in May

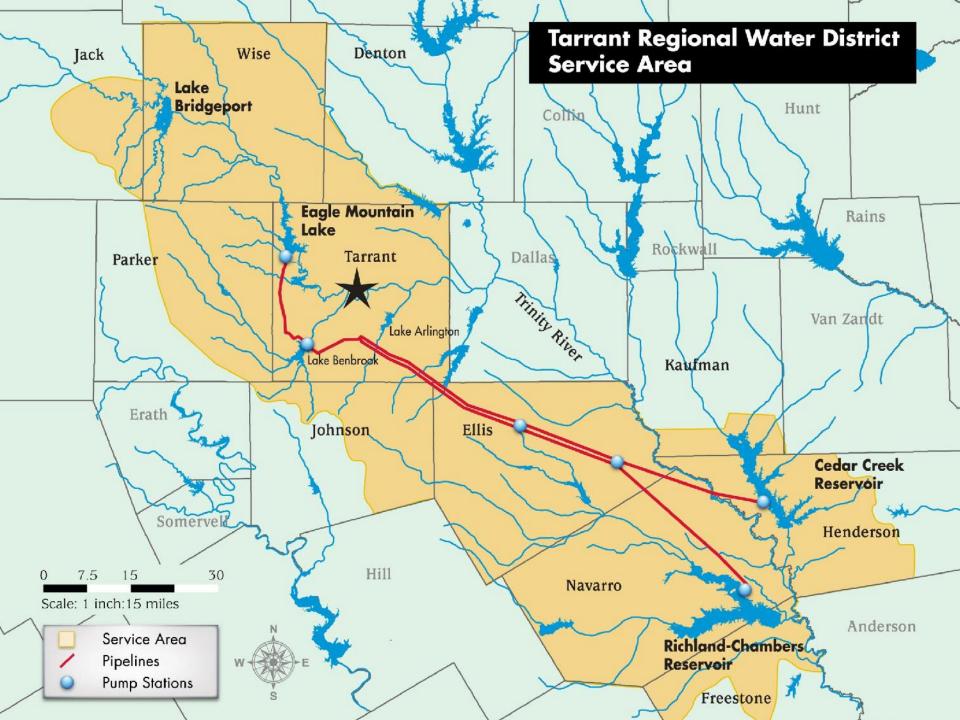
4. Develop Implementation Plan

Over next few months...

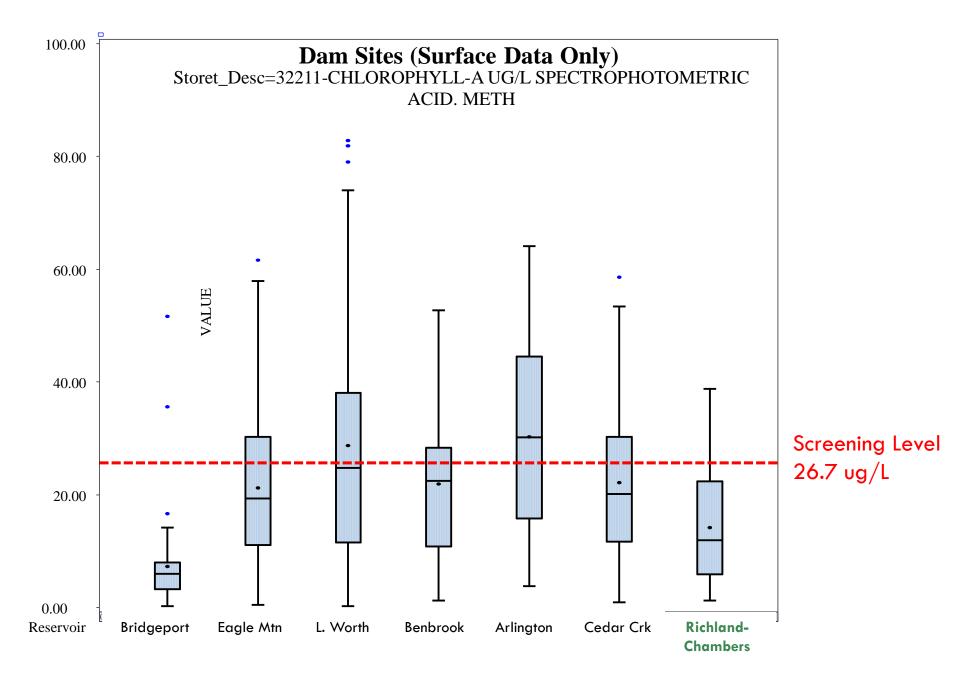
- Identify technical & financial assistance needed
- Develop education & outreach plan
- Schedule
- Milestones
- Criteria for measuring progress
- Monitoring Plan

RICHLAND-CHAMBERS WPP

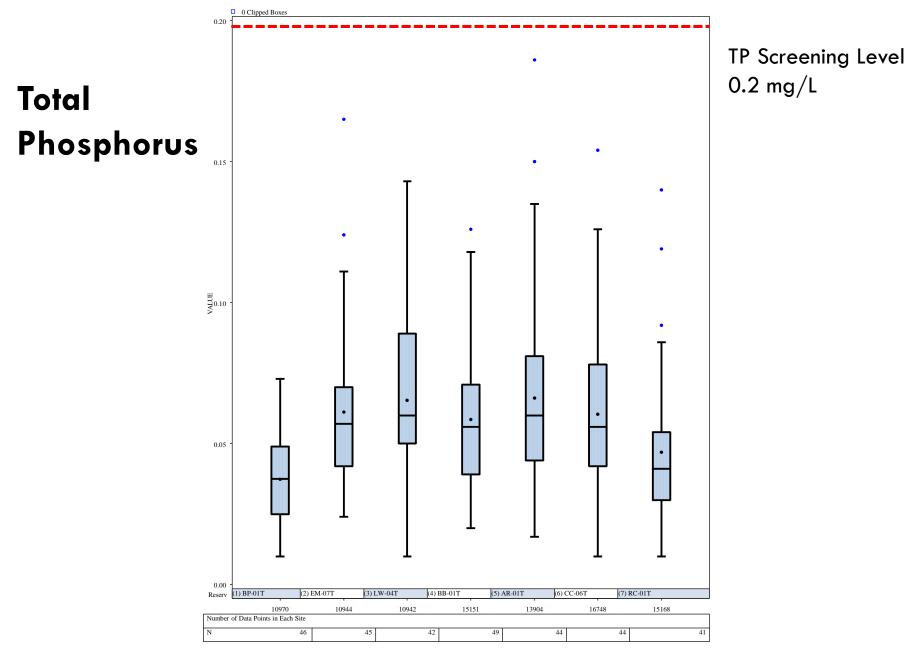
April 2017 Mark R. Ernst TRWD

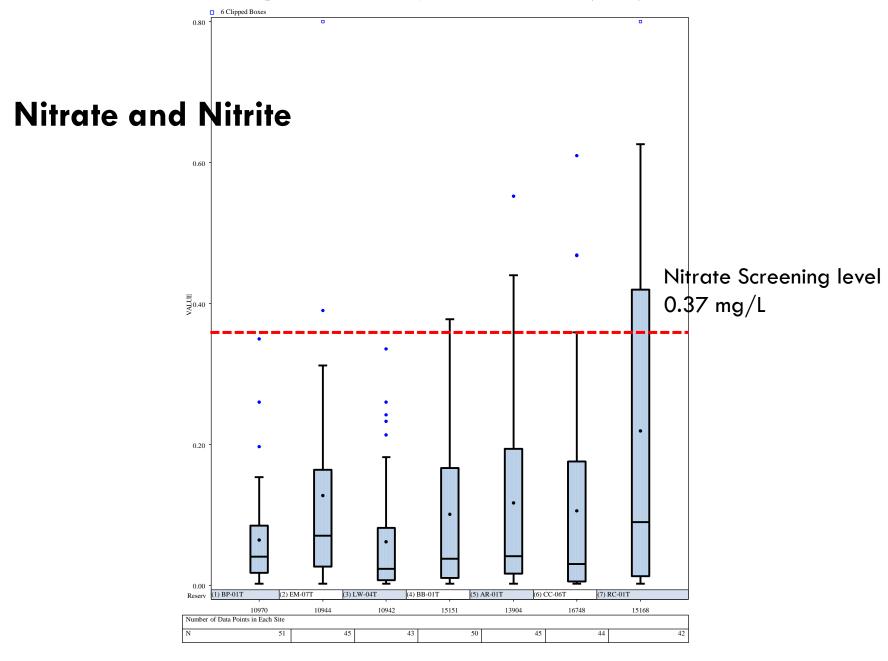

RICHLAND-CHAMBERS WPP

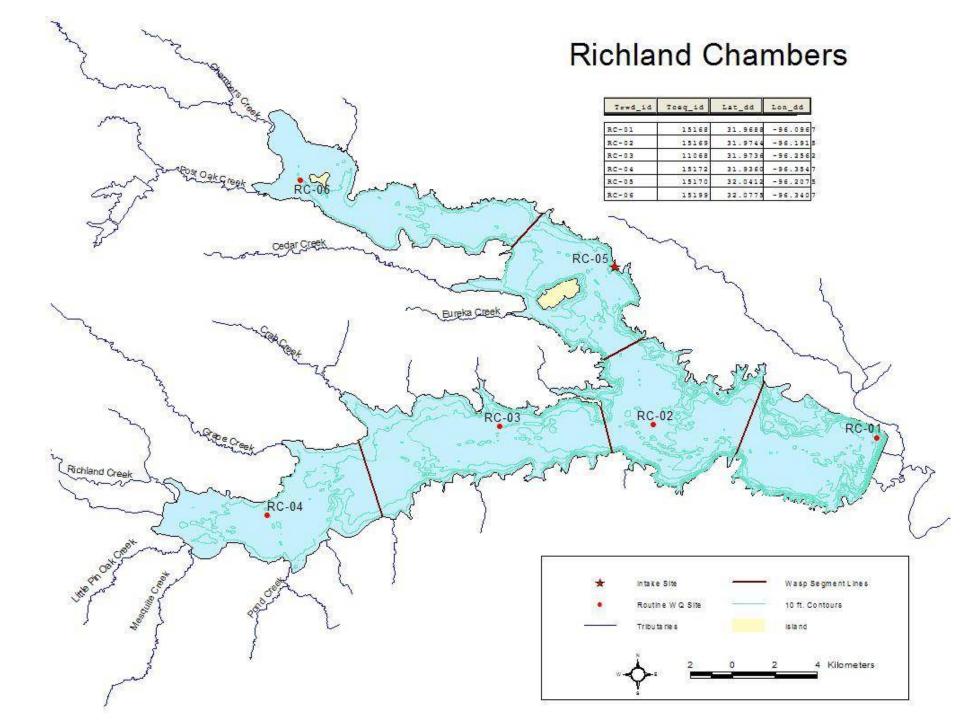
Status of Richland-Chambers reservoir water quality compared to other reservoirs in the area

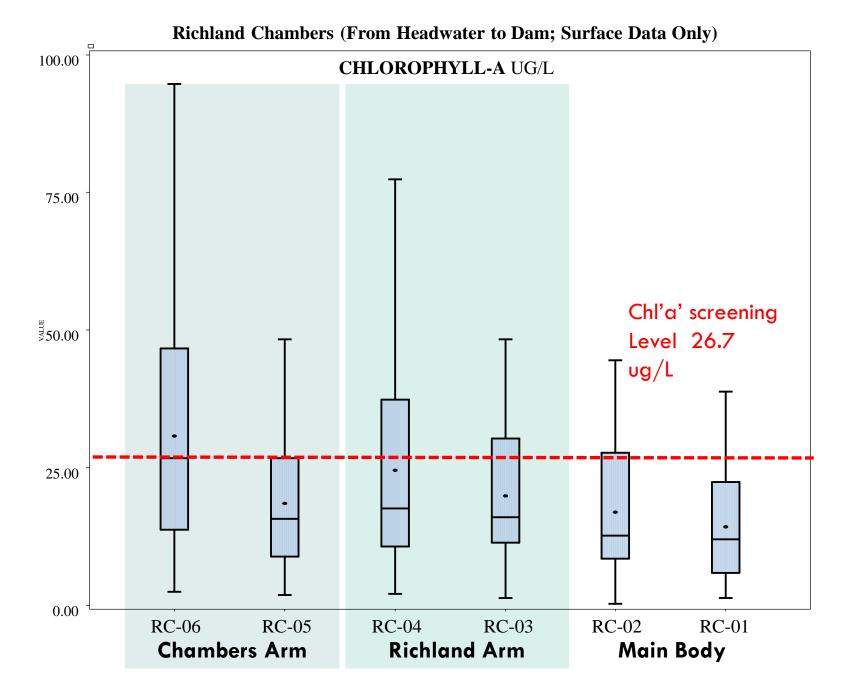

Variation of water quality within Richland Chambers Reservoir

Water quality of the two main tributaries

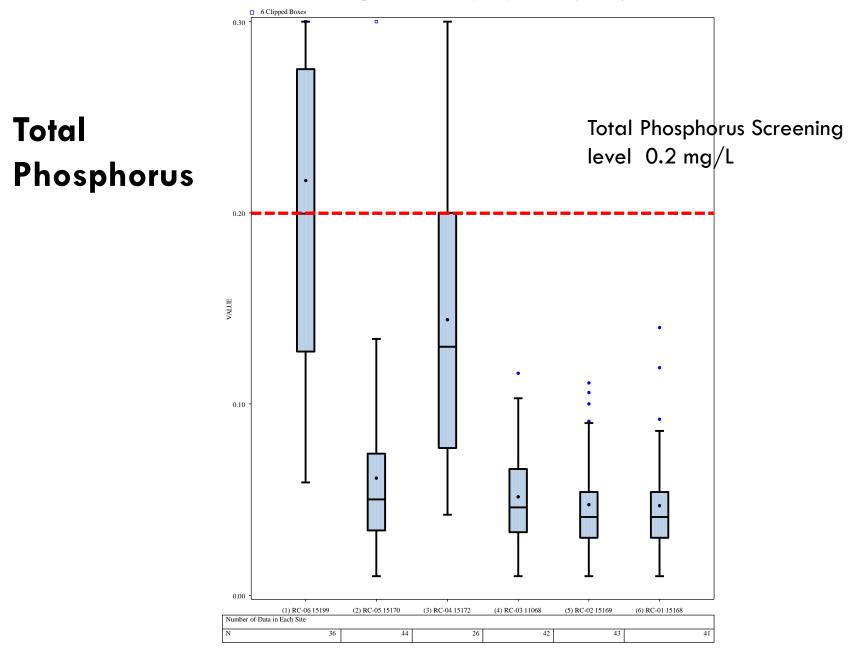

Contemplate where should we focus our assessment or measure of success.

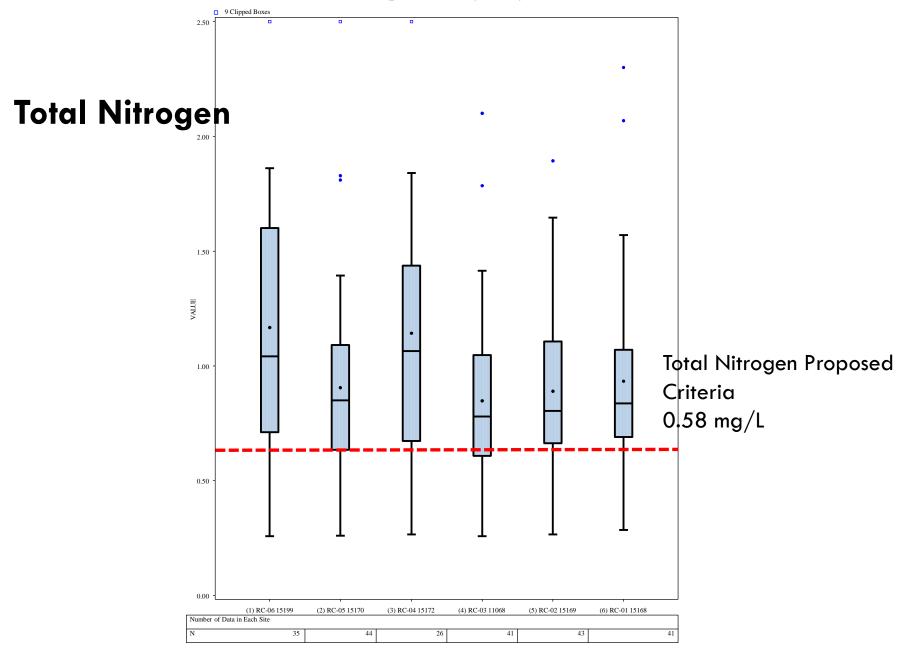

HOW DOES RICHLAND-CHAMBERS WATER QUALITY COMPARE TO OTHER RESERVOIRS?

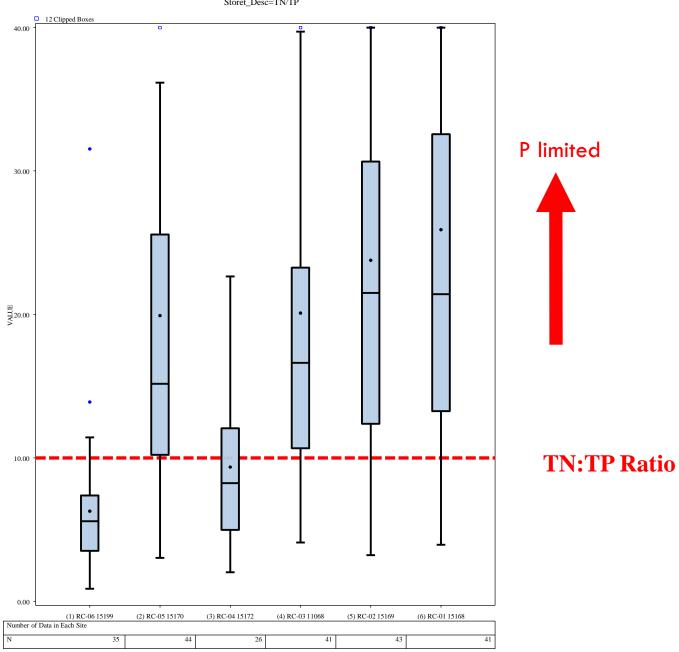

Dam Sites (Surface Data Only) Storet_Desc=00665-PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)



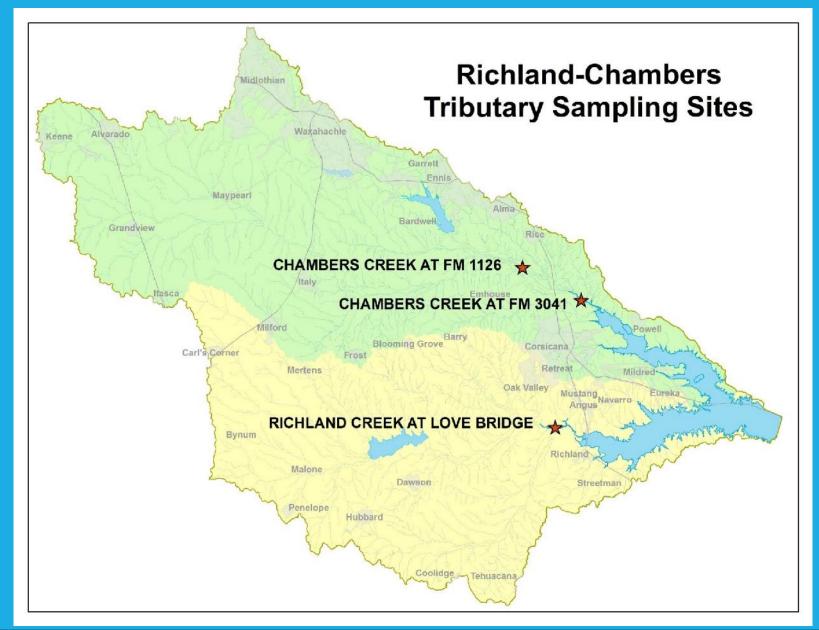
Dam Sites (Surface Data Only) Storet_Desc=00630-NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)


Longitudinal Gradients in Richland Chambers Reservoir


Richalnd Chambers (From Headwater to Dam; Surface Data Only)


Storet_Desc=00665-PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)

Richalnd Chambers (From Headwater to Dam; Surface Data Only)

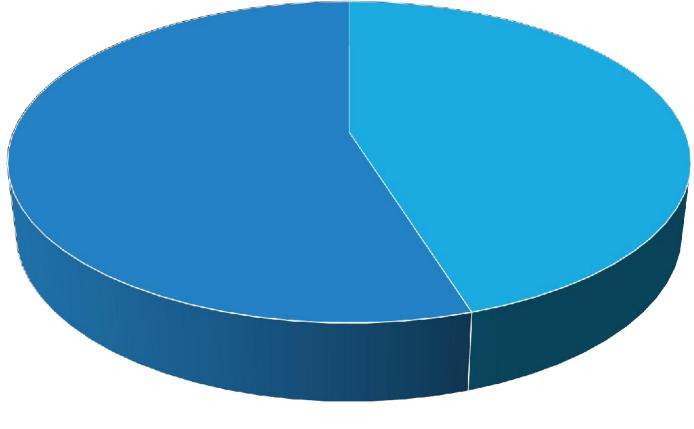

Storet_Desc=Calculated TN (TKN+NOX)

Richalnd Chambers (From Headwater to Dam; Surface Data Only) Storet_Desc=TN/TP

What are the Main Tributaries Like?

CHALLENGES WITH ANALYZING TRIBUTARY DATA

Change in sampling strategy: Storm vs routine

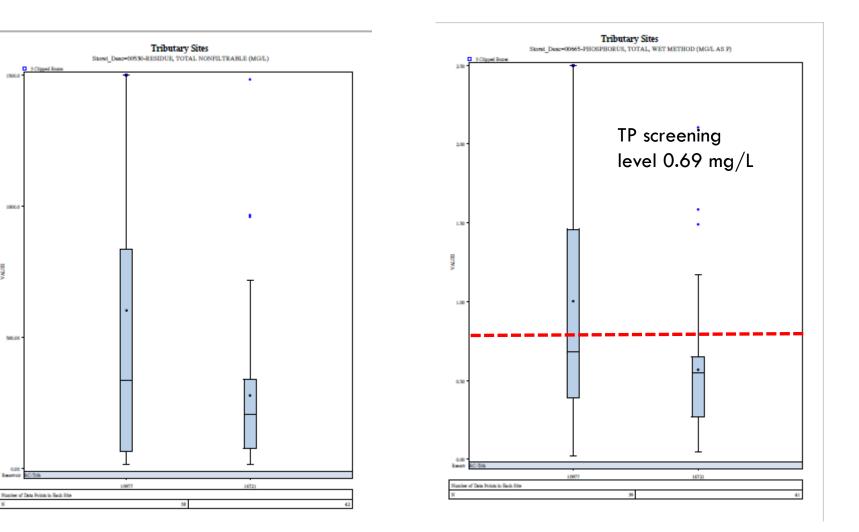

Reservoir release vs watershed runoff

Seasonality

Long term dataset with drought and floods

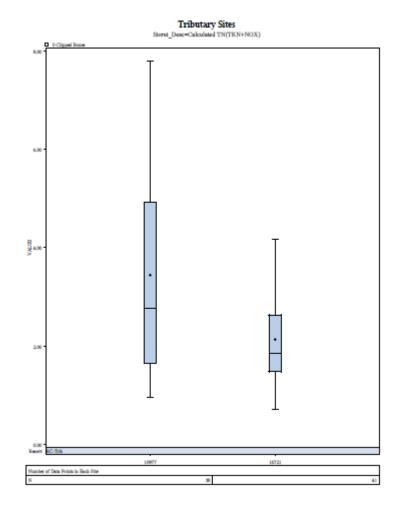
Lab changes

Richland-Chambers Watershed 1,254,322 acres or 1960 sq miles


Richland Chambers

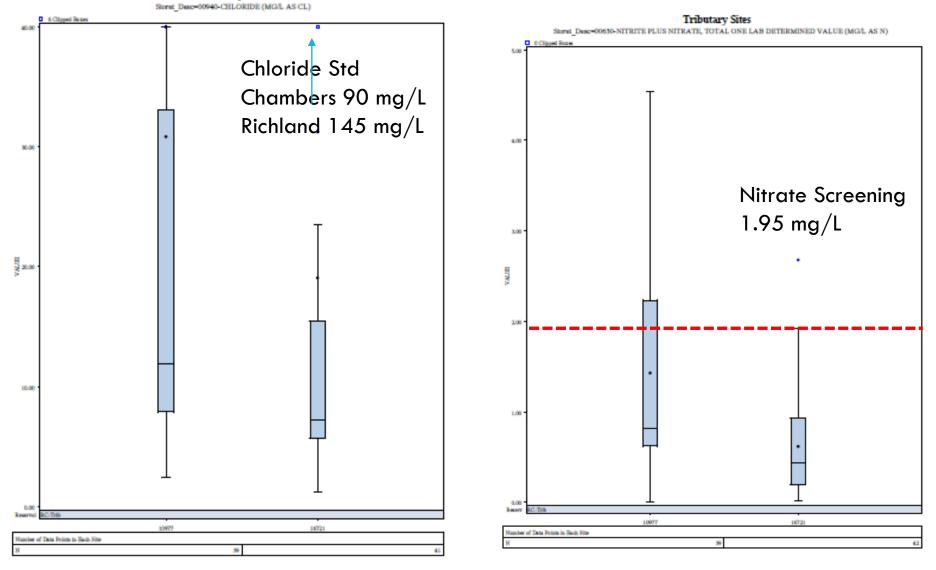
TSS

1000.0


NUMBER OF BRIDE

500.00 -

TP


Total Nitrogen

Chloride

Nitrite + Nitrate

Tributary Sites

10-Year Tributary Trend Analysis 2007-2016 Only Statistically Significant Results

Site	Parameter	Median	Slope	P-value
Chambers	Flow (cfs)	1303	-1.5	.0048
Chambers	NOX (mg/L)	.82	.0004	.0382
Chambers	TP (mg/L)	.68	0003	.0053
Chambers	TOC (mg/l)	8.0	0016	.0208
Richland	Flow (cfs)	1038	-2.44	.0039
Richland	TP (mg/L)	.55	0001	.03 <i>57</i>

Chambers Trib site moved from FM 3041 to FM 1126 in 2012.

Sampling program also went more routine

at that time.

CONCLUSIONS

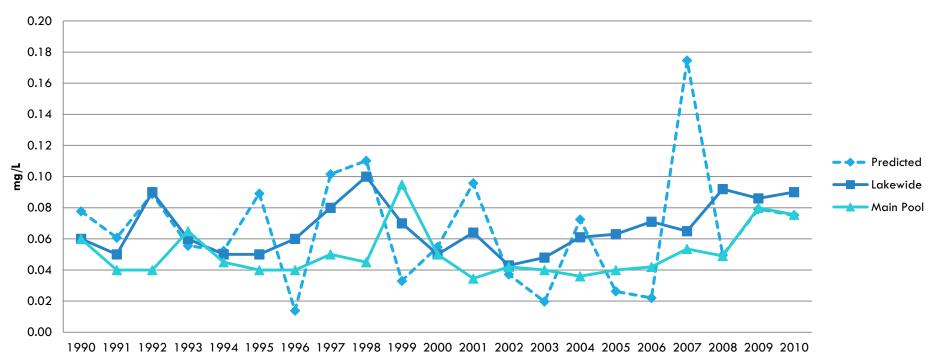
Water Quality of Richland-Chambers Reservoir is quite good. 2nd in our system.

Definite longitudinal gradients from the headwater to the dam

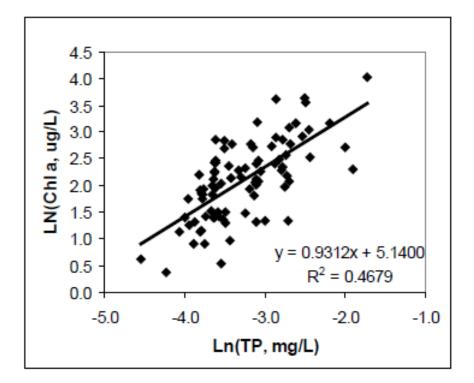
Reservoir shows to be P limited in the main pool

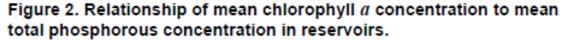
Chambers Creek carries more water, sediment, salts and nutrients.

Where do we assess success?

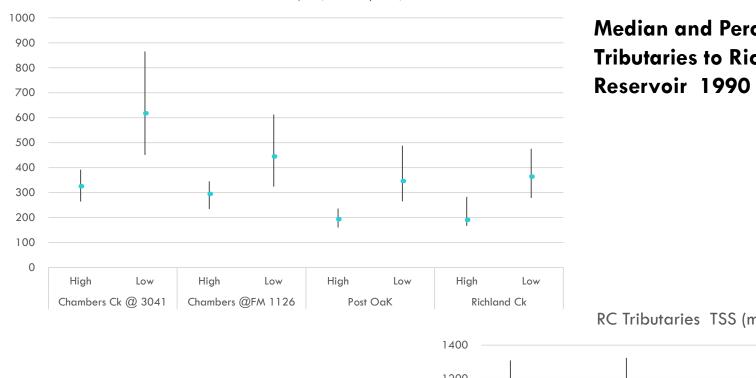

TOOL TO ASSESS THE P LOADING OF THE RESERVOIR

Procedures to Implement the Texas Surface Water Quality Standards

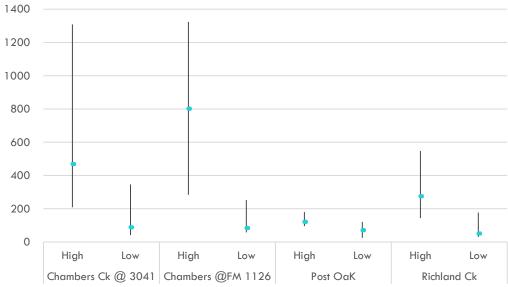

Prepared by Water Quality Division

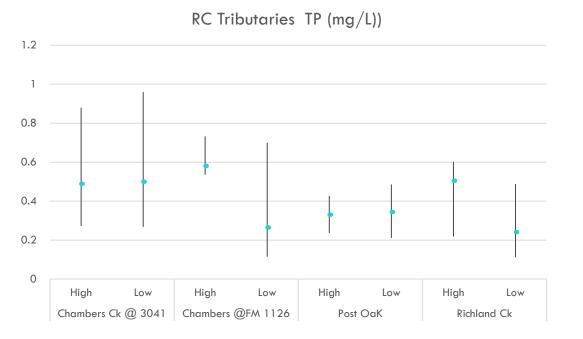

> RG-194 June 2010

$$P = \frac{L}{Vs + z/\mathcal{F}}$$
Where: P is the Lake Phosphorus concentration (mg/l)
L annual areal Phosphorus loading rate (load/median area, g/m²-yr)
V_s is the apparent settling velocity or calibration coefficient (m/yr)
z is the median depth (m)
 \mathcal{F} is the hydraulic detention time (median volume/ total outflow, yr)
Reckhow, K.H. 1979. Empirical Lake Models for Phosphorus: Development, Applications, Limitations and
Uncertainty.
In Perspectives on Lake Ecosystem Modeling. Ann Arbor
Science

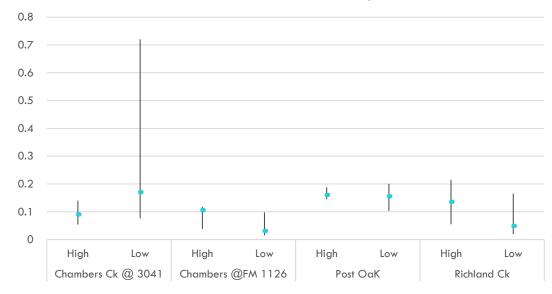


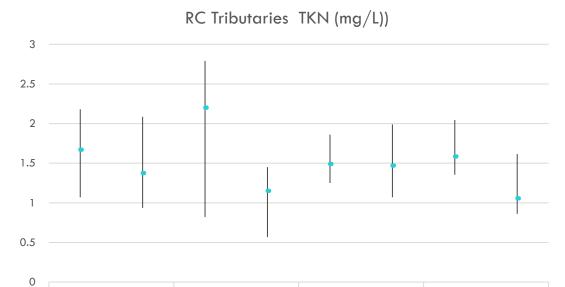
Richland-Chambers Reservoir TP Concentrations

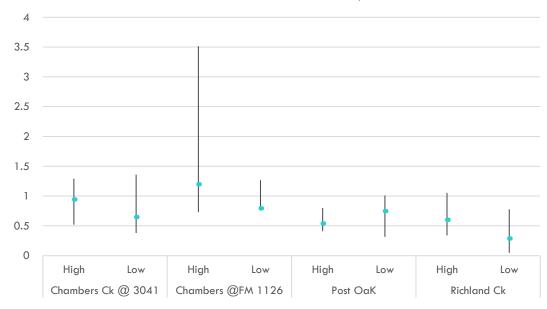

Source: TCEQ Implementation Procedures 2010



RC Tributaries Spc (umhos/cm)


Median and Percentiles for Main Tributaries to Richland-Chambers Reservoir 1990 to present

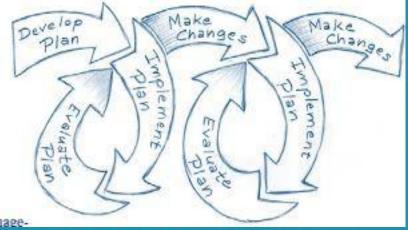

RC Tributaries TSS (mg/L))


RC Tributaries OPO4 (mg/L))

0	High	Low	High	Low	High	Low	High	Low
	Chambers C	Ck @ 3041	Chambers (@FM 1126	Post	OaK	Richla	nd Ck

RC Tributaries NOX (mg/L))

Richland-Chambers Watershed Partnership

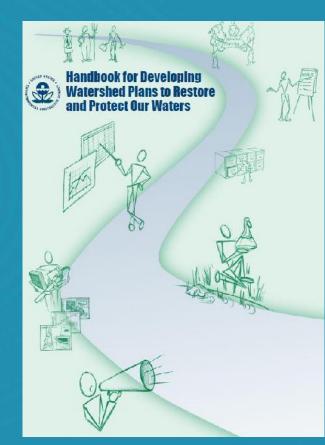

STAKEHOLDER MEETING SEPTEMBER 20-21, 2016

Setting Goals TINA HENDON, TRWD

Watershed Protection Plans

Steps to Effective Watershed Management

- 1. Build partnerships
- 2. Characterize your watershed
- 3. Establish goals & identify solutions



- 4. Develop an implementation program
- 5. Implement your plan
- 6. Measure progress & make adjustments

The outcomes of this process are documented or referenced in a watershed plan. Watershed Protection Plans

Nine Elements of a Successful Watershed Plan

- A. Identify problem & sources
- B. Reductions needed to reach goals
- C. Identify measures needed to achieve reductions
- D. Assistance needed
- E. Education & outreach plan
- F. Schedule
- G. Milestones
- H. Criteria for measuring progress
- I. Monitoring Plan

		"Nine Elements"								
		A	В	С	D	Е	F	G	Н	
SS	Build Partnerships									
Planning process	Characterize Watershed	Х								
pro	Goals and Solutions		Х	Х						
ing	Implementation Program				Х	Х	Х	Х	Х	Х
anr	Implement the Plan									
Ч	Measure Progress & Make Adjustments									

Where do we start?

- > What's the problem? Why are we here?
- You're here because you're interested in some facet of the project.
 - > Natural Environment
 - > Regulatory Environment
 - > Economic Environment
 - > Or maybe just curious or skeptical

Developing Goals SCOPE sets the boundaries of the project.

Johnson

Ellis

Hill

Navarro

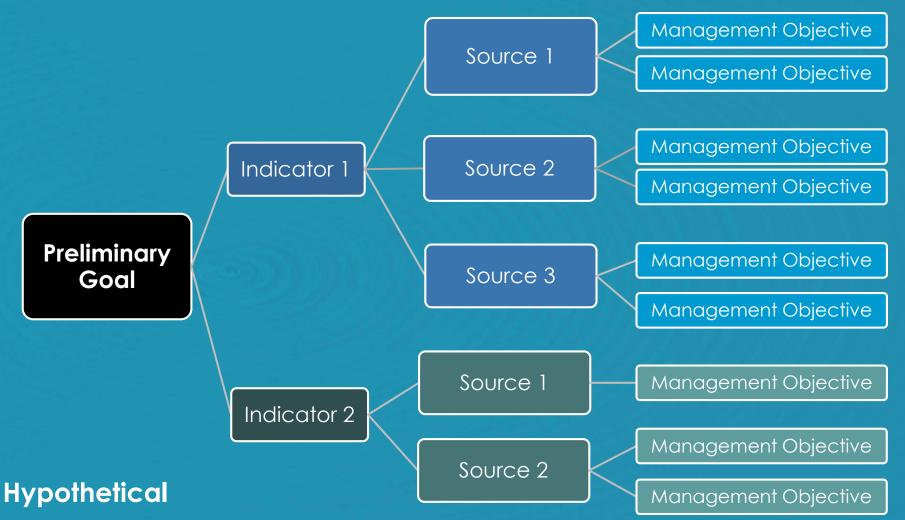
Limestone

Where?

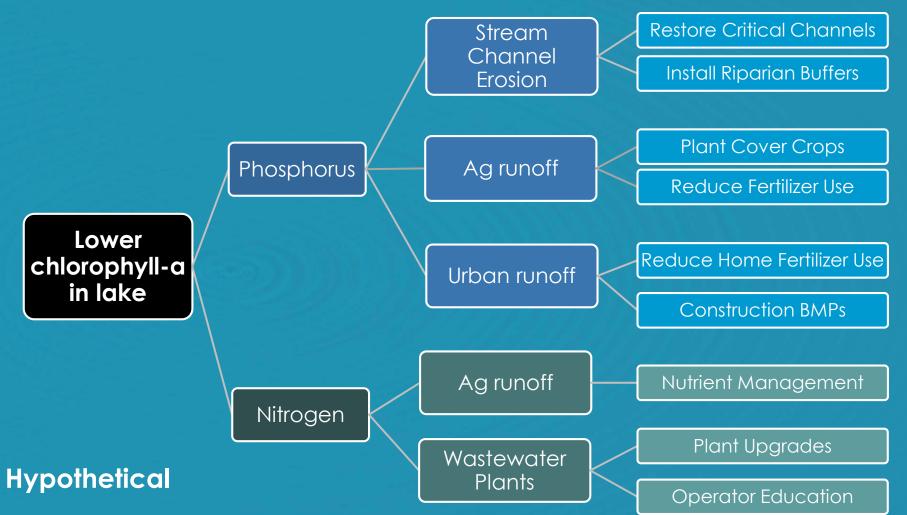
- > Streams
- > Lake
- > Both

What?

- > Impairments
- > Concerns
- > Water Supply


When?

- > 5 years
- > 10 years
- Longer?


Balance SCOPE with resources and complexity

Freestone

Translating Goals into Management Objectives

Translating Goals into Management Objectives

Managing Objectives to Measure Success

Restore Critical Channels

Install Riparian Buffers

Plant Cover Crops

Reduce Home Fertilizer Use

Reduce Fertilizer Use

Construction BMPs

Nutrient Management

Operator Education

WWTP Plant Upgrades

Each management objective is > quantified,

assigned to a target area,

- scheduled,
- tracked, and
- » evaluated at predetermined intervals.

Where to focus?

- The watershed boundary defines an interconnected and interdependent system.
- What happens anywhere in a watershed affects downstream water bodies.

Policy and guidance indicate that WPPs should be developed to address all identified water quality problems in a watershed.

What issues to address?

- Impairments have to be addressed with a TMDL within 13 years of listing
- Concerns "less urgent" but may signal impending or future problems.

Water Body	<u>N</u>	DO	<u>Chl-a</u>	<u>CI</u>
Chambers Creek			CS	Imp
Waxahachie Creek	CS			
Lake Waxahachie			CS	
Cedar Creek		Imp		
Post Oak Creek		CS		
Richland Creek		CS	CS	
Navarro Mills Lake		CS		
Grape Creek		CN		
Richland-Chambers Lake			CS	

Other issues such as water supply and drinking water quality are not yet identified by TCEQ.

Restoration vs Protection?

Considerations:

TCEQ reports that

- Several impairments and concerns are not supported by sufficient water quality data.
- Some impairments and concerns have been carried forward from previous reports without new supporting data.

Questions:

> Are these impairments and concerns still a problem?

> Are new data needed to consider these for goals?

How long will all this take?

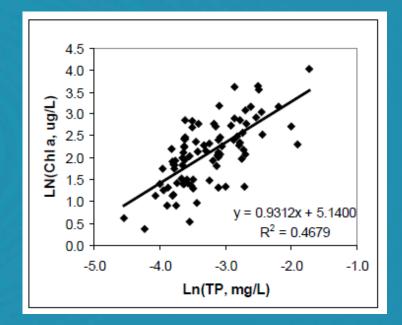
- WPPs are generally written for10 year periods.
- If project lasts longer, WPP is updated and the time needed to meet goals can be reassessed.

More complex issues may take longer, while more straightforward issues may be resolved early in the project.

Johnson

Ellis

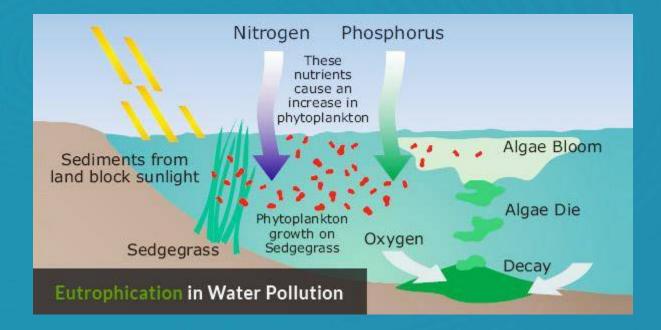
Hill


Navarro

Limestone

Freestone

Generally speaking...
The combined issues of
elevated nutrients
Elevated chlorophyll-a,
low dissolved oxygen


Point strongly to eutrophication related to phosphorus loading from the watershed.

Review of Eutrophication

- Runoff of nutrients typically nitrogen or phosphorus
- Promotes excessive plant growth and decay

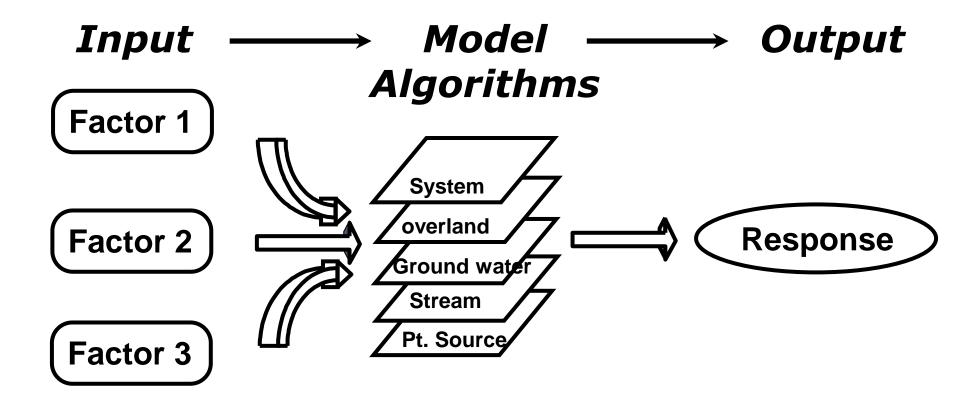
- Causes water quality problems
 - > Algae blooms
 - > Taste & odor problems
 - > Low dissolved oxygen

Preliminary goals may include

- Addressing eutrophication problems in streams and the lake by reducing nutrient contributions from the watershed - likely phosphorus.
- Addressing lake sedimentation by reducing stormwater runoff and erosion in the watershed.

*Confirmation of concerns and impairments with insufficient data should take place before stakeholders invest in management measures to address them.

Questions?

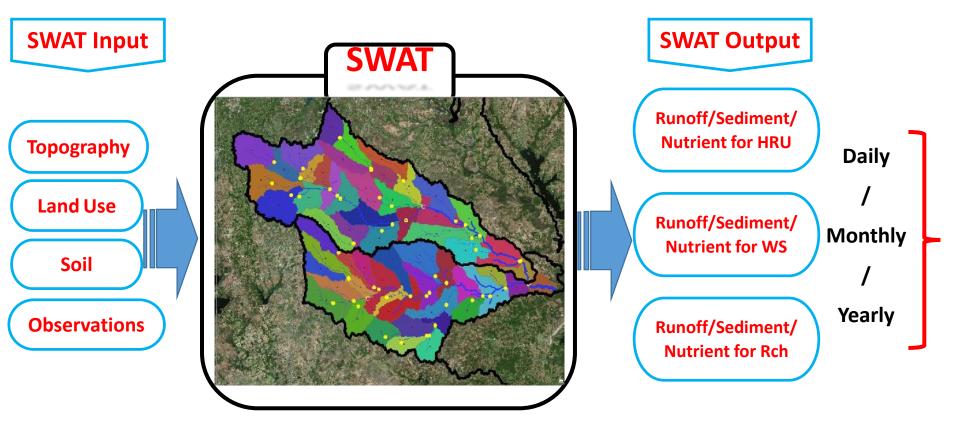

Water Body	<u>N</u>	DO	<u>Chl-a</u>	<u>Chloride</u>
Chambers Creek			CS	Imp
Waxahachie Creek	CS			
Lake Waxahachie			CS	
Cedar Creek		Imp		
Post Oak Creek		CS		
Richland Creek		CS	CS	
Navarro Mills Lake		CS		
Grape Creek		CN		
Richland-Chambers Lake			CS	

Watershed Model Richland-Chambers Watershed

Stakeholders meeting Waxahachie (April 25, 2017)

R. Srinivasan Essayas Ayana Ecosystem Science and Management Texas A&M University

Nuts and Bolts of a Model

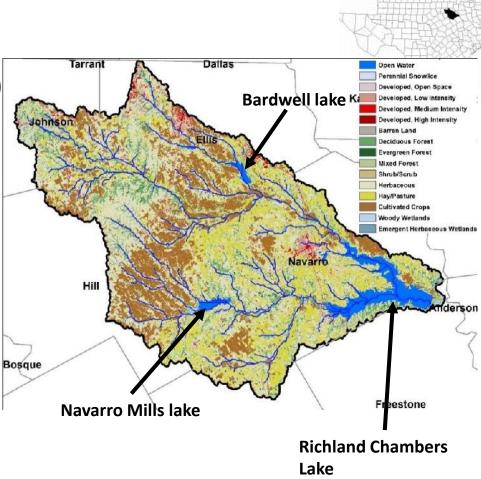


What our model do:

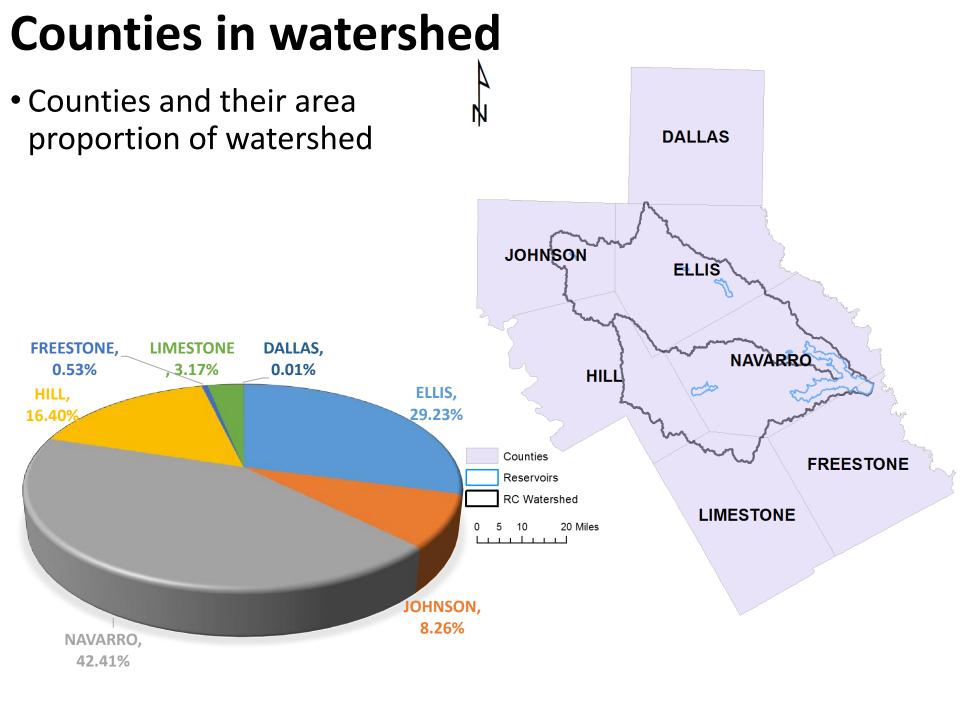
- Take spatial and non-spatial input
- apply set of equations or techniques to analyze
 Rainfall/runoff
 - Erosion and sediment transport
 - Pollutant loading
 - Stream transport
 - Impact of Management practices

SWAT in a Nutshell

- •A river basin model used to predict
 - impact of land management practices on
 - Water/sediment/agricultural chemical yields

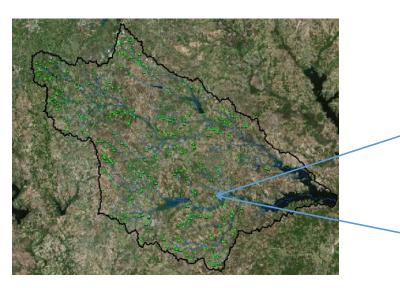


World_Imagery - Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community


Watershed characteristics

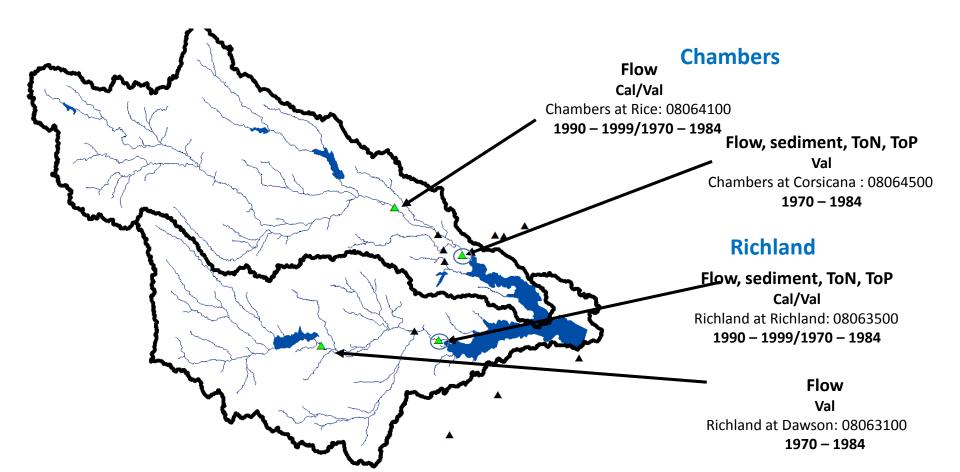
- Richland-Chambers Watershed
 - Area 5700 sq.km (2200 sq.mile)
 - Two HUC 8 /58 HUC 12 watersheds

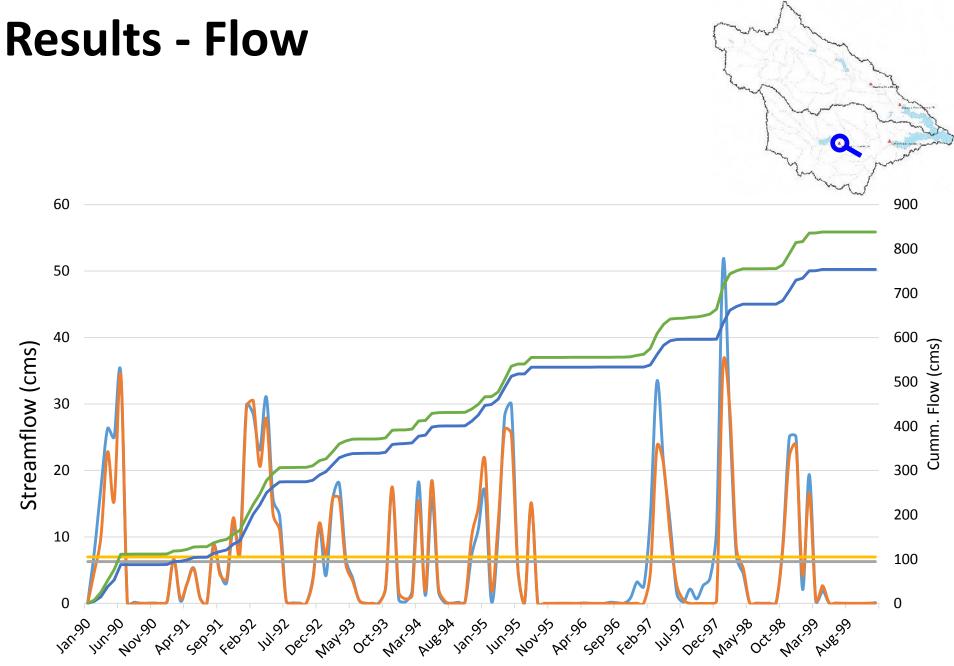
Agriculture	96222	19%	
Forest	56390	11%	
Water	29113	6%	
Builtup	35872	7%	
Range-Grasses	154222	30%	
Pasture	121564	24%	
Range-Brush	2689	1%	

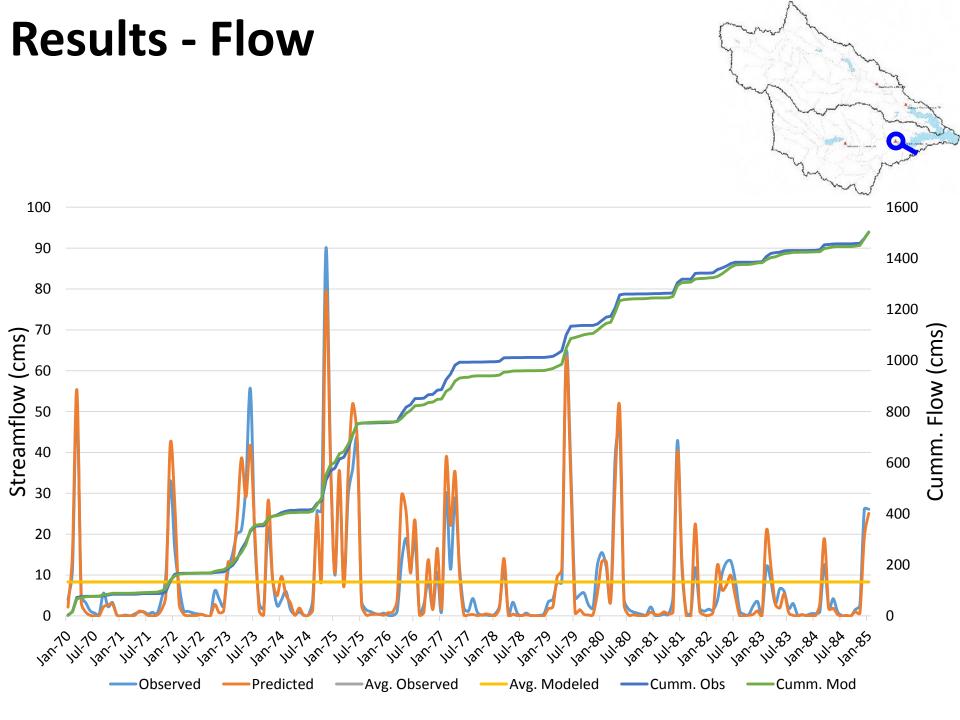


 Several BMPs implemented by USDA-NRCS to improve water quality

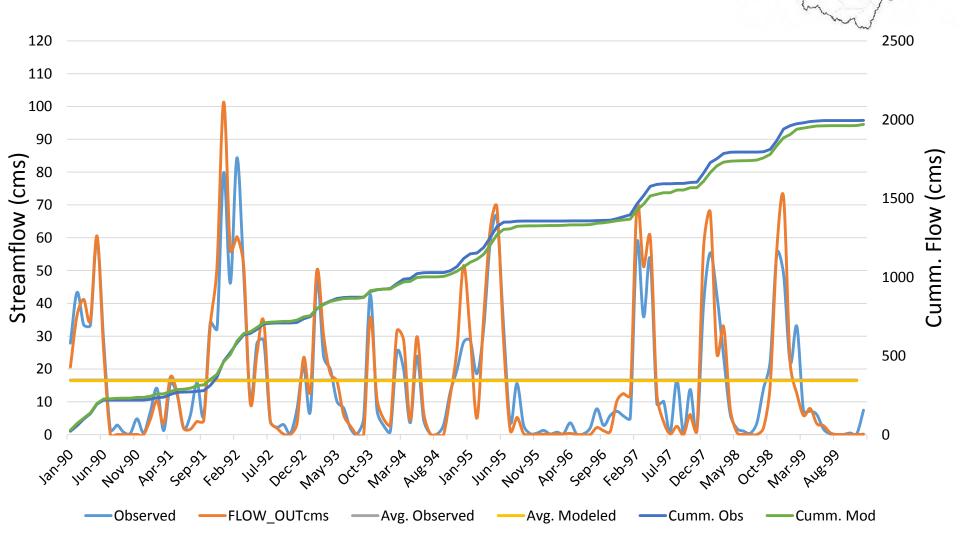
Data requirement

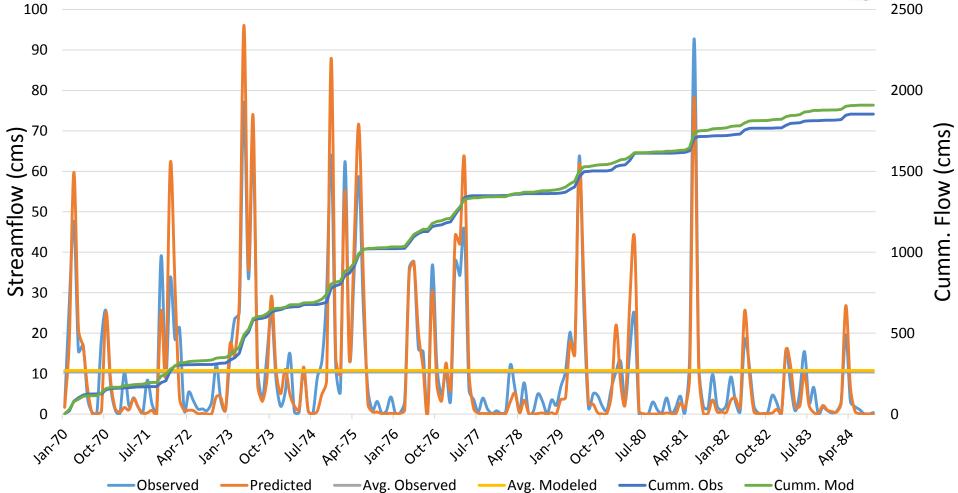

- Watershed characterization
 - USGS predefined Sub-watersheds and streams
- Land use land cover
 - USGS-NLCD and USDA-NASS combined
- Soils
 - NCRS-SSURGO soils
- Ponds and reservoirs
 - USDA-NRCS
 - Surface area
 - Volume

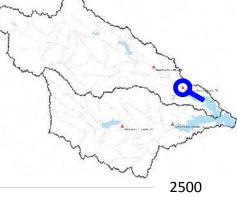


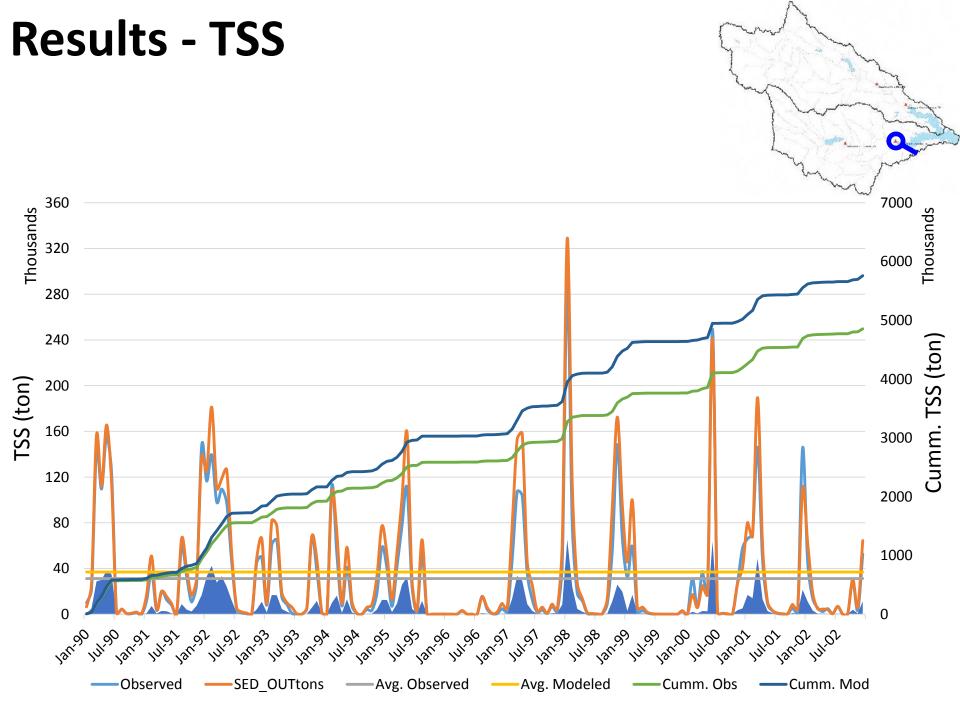


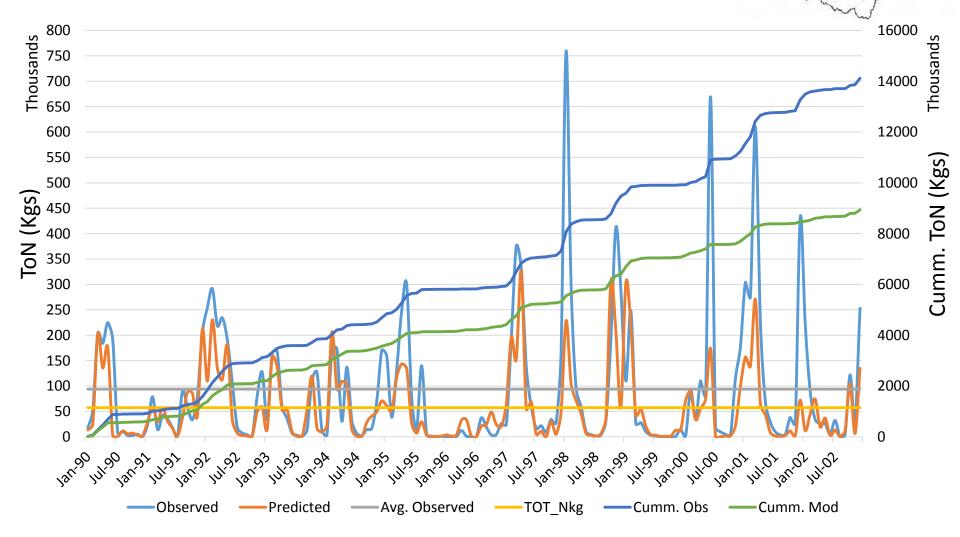
Model evaluation

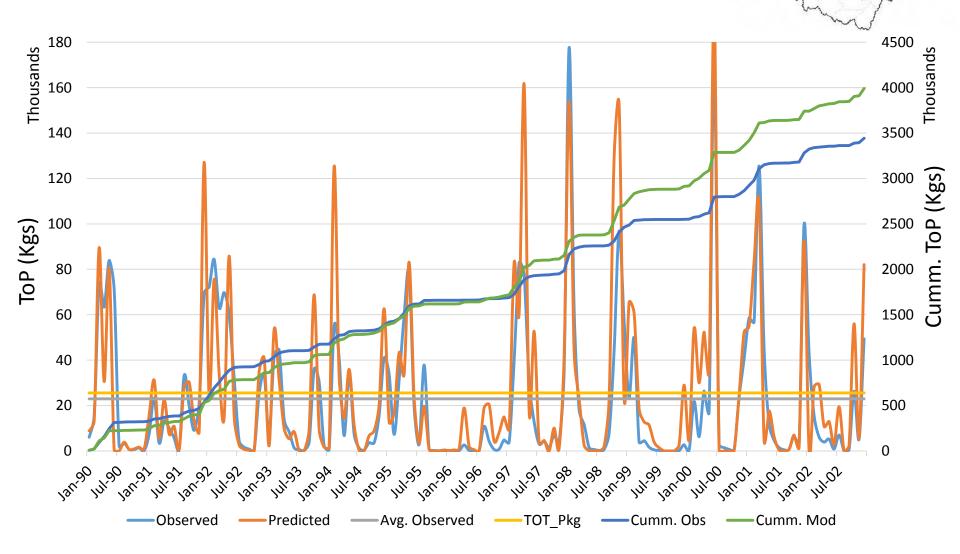

- A model verification step
 - How good is the model to represent a process on interest in our watershed?
 - Can the model be used to tell about the future?

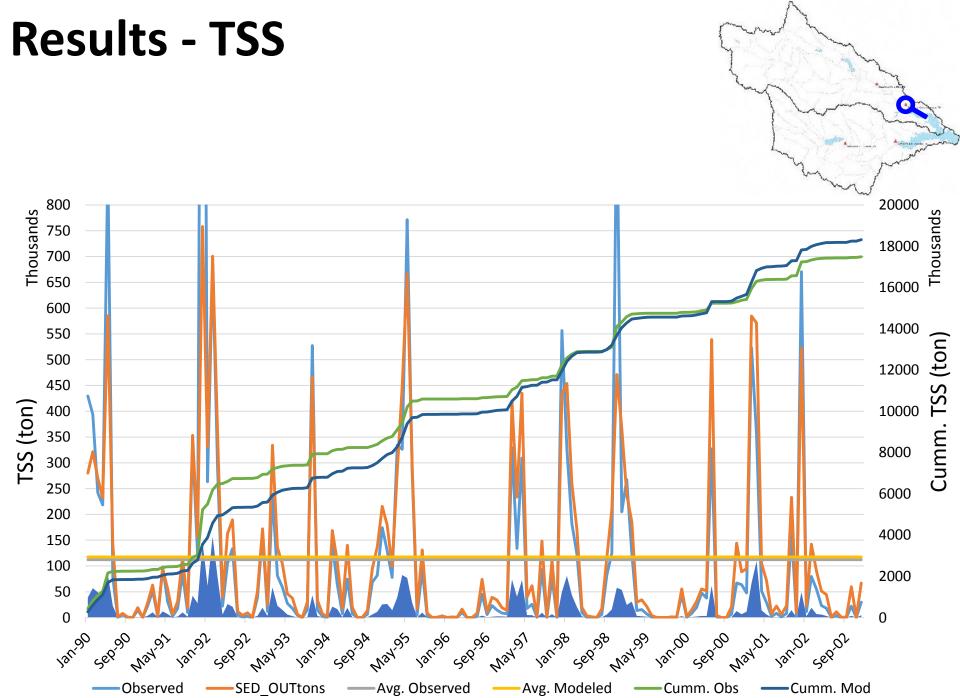




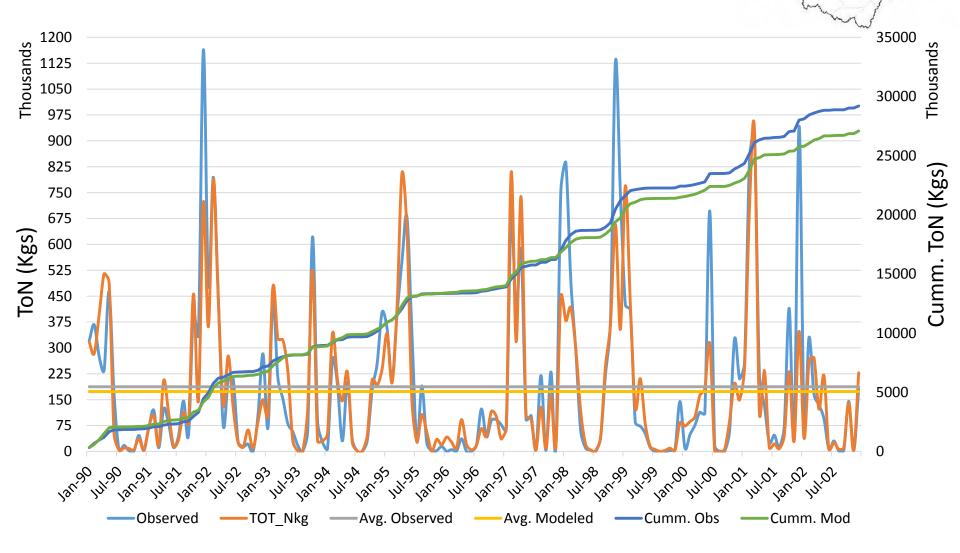

Results - Flow



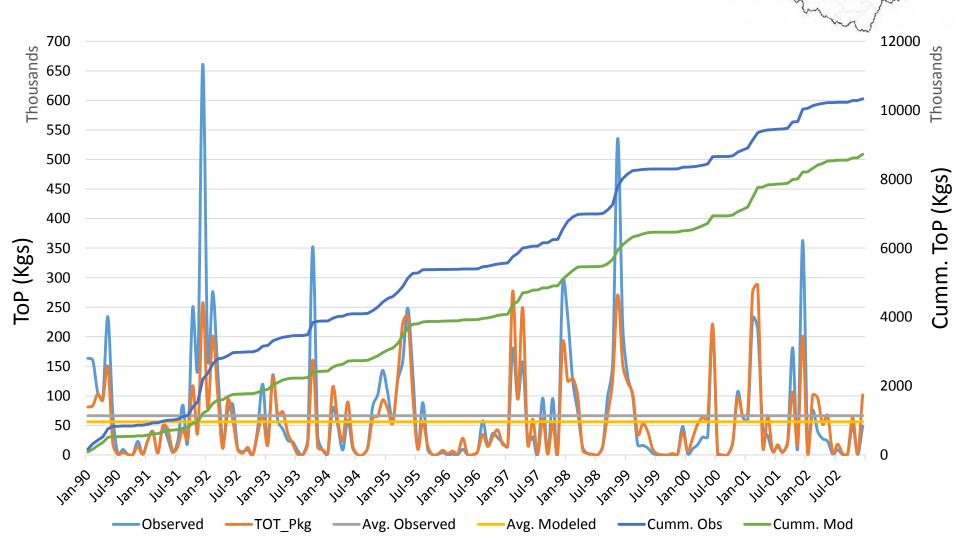




Results - ToN



Results - ToP



Results - ToN

Results - ToP

• Sediment results

Richland @ 3510 Just above RC reservoir							
Monthly Output	Average		Standard Deviation		Statistics		
	Measured	Simulated	Measured	Simulated	R^2	PBIAS (%)	NSE
Sediment (tons)	31135	36925	48221	54770	0.96	-18	0.92
	Cham	bers @ 45(00 – Just abov	ve RC reserv	voir		
Monthly Output	Average		Standard Deviation		Statistics		
Monthly Output	Measured	Simulated	Measured	Simulated	R^2	PBIAS (%)	NSE
Sediment (tons)	112078	117407	242295	166701	0.72	-5	0.69

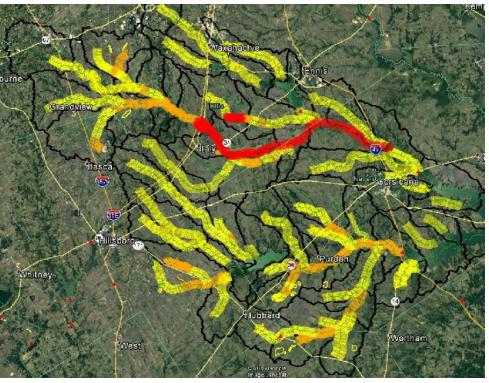
• Nutrient results

Richland 3510 – Just above RC reservoir							
Monthly Output	Avei	rage	Standard Deviation		Statistics		
Monthly Output	Measured	Simulated	Measured	Simulated	R^2	PBIAS (%)	NSE
Total Nitrogen (Kgs)	90498	57276	127912	70656	0.55	37	0.45
Total Phosphorus (Kgs)	22078	25589	31335	36450	0.69	-15	0.57

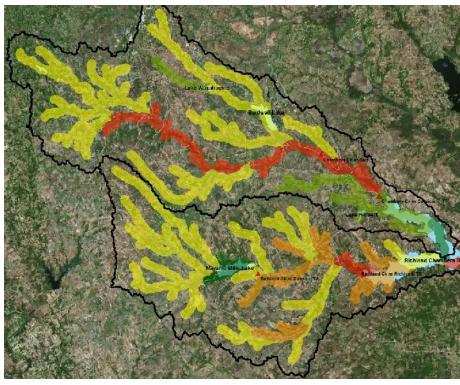
Chambers 4500 – Just above RC reservoir							
Monthly Output	Ave	rage	Standard Deviation		Statistics		
Monthly Output	Measured	Simulated	Measured	Simulated	R^2	PBIAS (%)	NSE
Total Nitrogen (Kgs)	187212	173647	243321	204445	0.85	7	0.76
Total Phosphorus (Kgs)	66232	55904	97565	67322	0.72	16	0.68

What does this mean?

 Total sediment brought to RC reservoir since operation started (to 2015)


	Sediment (tons)	ToN (Kg)	ToP (kg)
Total Richland	24,229,057	46,829,282	25,999,163
Annual rate	835,485	1,614,803	896,523
Yield tons/ha	0.08	0.15	0.09
Total Chambers	37,615,985	70,551,410	27,464,142
Annual rate	1,297,103	2,432,808	947,040
Yield tons/ha	0.14	0.26	0.10
Grand Total	61,845,042	117,380,692	53,463,305
Aggregated Annual rate	2,132,588	4,047,610	1,843,562
Aggregated yield t/ha	0.11	0.21	0.09

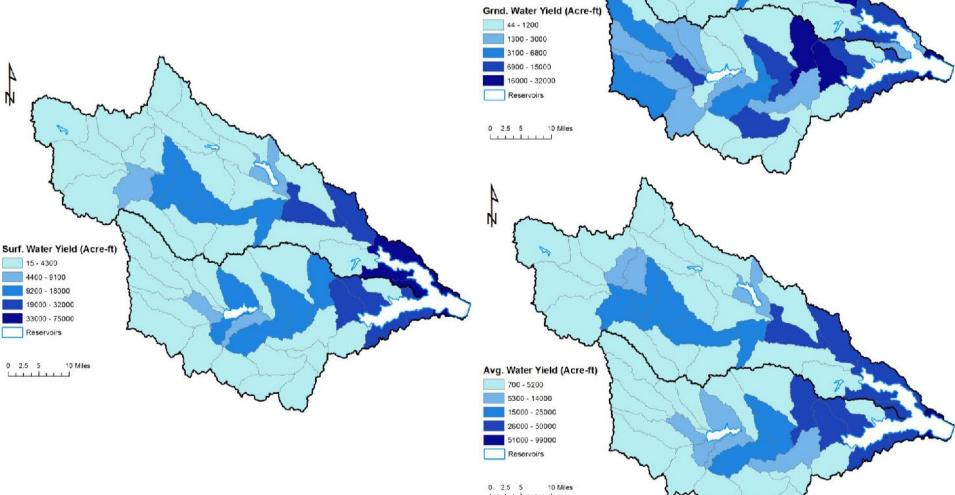
 RGA estimated (Baylor Univ.) total sediment mass of 43,330,910 tons (i.e. 1,455,890 tons/yr)


Comparison with RGA

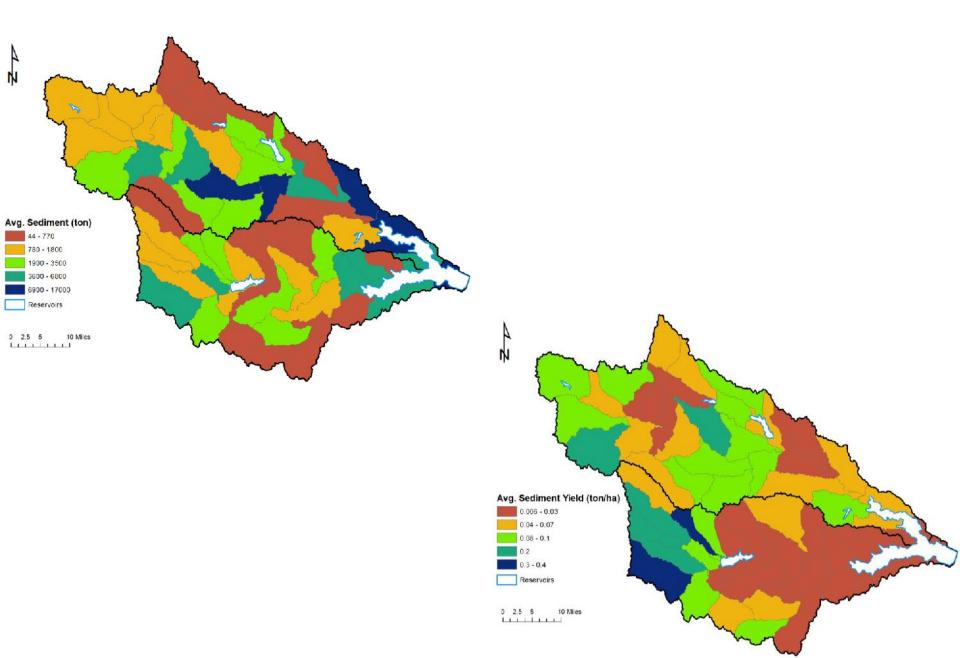
Severity of channel erosion

RGA (Baylor University)

SWAT Sediment Delivery Ratio


≈100%

>100%

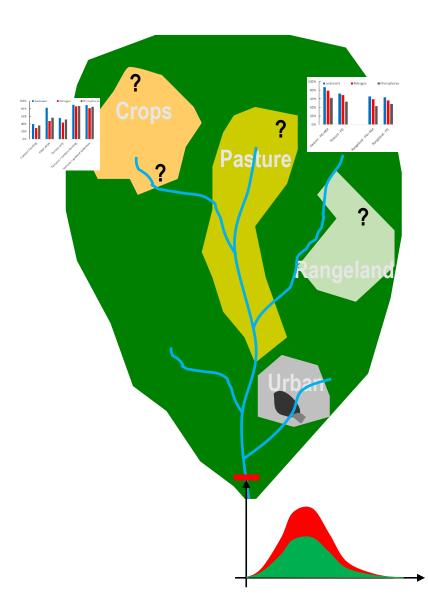

<100%

Average sediment yield (1987-2015)

Next steps Accounting for BMPs (2003 onwards)

- Total BMPs applied on 20% of watershed
- Structural BMPs (in ha)
 - Contour Farming; filter strips; Grassed Waterways; Terraces; Terraces with Contour Farming; Terraces with Grassed waterways

	Area	%
Total watershed	507792	
Total BMPs applied	6767	1%


Non Structural BMPs

 Residue Management; Conservation crop rotation; Nutrient management; Prescribed grazing; Brush management; Integrated pest management

	Cropland Pasture		Cropland Past		Rangeland
BMP applied	43107	24228	27905		
% Watershed	8%	4.6%	5.3%		

Next steps

- Incorporate BMPs to calibrated model
- Run model and evaluate
 - Reduction (if any) in
 - sediment
 - Nutrient
- Identify
 - location and
 - type of BMPs with for effectiveness

Thanks

Texas Pollutant Discharge Elimination System (TPDES) Permitting Municipal Separate Storm Sewer Systems (MS4s)

Richland-Chambers Reservoir Watershed Protection Plan

April 25, 2017

Hanne Lehman Nielsen Lindsay Garza

Stormwater & Pretreatment Team Water Quality Division TCEQ

Municipal Separate Storm Sewer Systems (MS4)

An MS4 is a publicly owned or operated stormwater drainage system designed to collect and convey stormwater

Which MS4s are Regulated?

Medium and Large MS4s ("Phase I")

Individual TPDES Permits

Small MS4s in Urbanized Areas (Phase II")

- TCEQ Small MS4 General Permit TXR040000
- Combined Phase I and Phase II MS4s
 - Individual MS4 Permit for Texas Department of Transportation – WQ0005011000

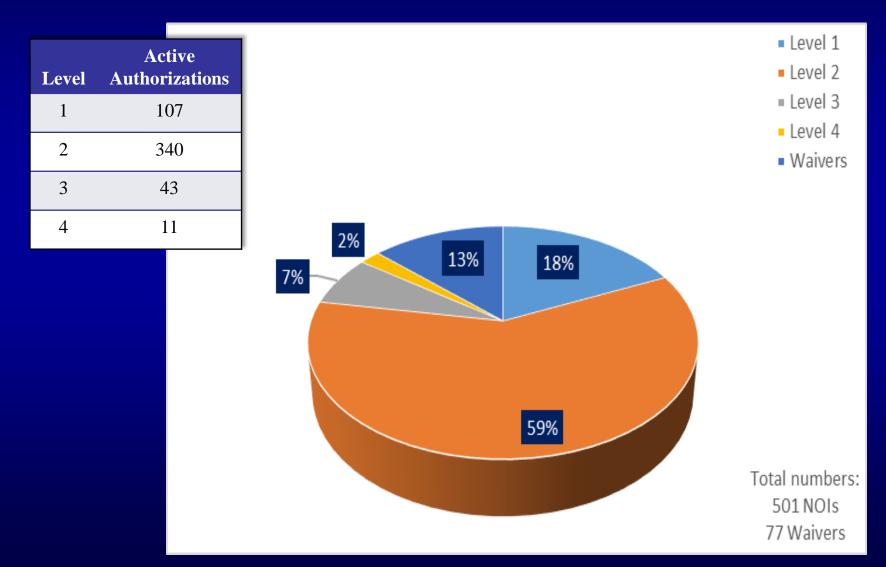
Phase II MS4 General Permit, TXR04000

- Regulates stormwater discharges from publicly owned or operated "Small" MS4s located in urbanized areas (UAs)
- Population based on the 2000 and 2010
 U.S.Censuses
- Renewed December 13, 2013 5 year permit term

	General Permit 2007 Authorizations Issued	General Permit 2013 Applications Received
NOIs	406	539
Waivers	66	78
Total	472	617

*12 have not renewed yet

Phase II MS4 General Permit


- Tiered Permitting Approach based on population in the UA
 - Level 1 Up to 10,000
 - Level 2 10,000 to 40,000
 - includes non-traditional MS4s
 - Level 3 40,000 to 100,000
 - Level 4 More than 100,000

> Waiver option for population less than 1,000

*Based on the 2000 and 2010 U.S.Censuses

Phase II MS4s Active Authorizations

- Develop and Implement a Stormwater Management Program (SWMP)
 - Develop an implementation schedule
 - Implement in yearly intervals over the five year permit term
 - Must be fully implemented at the end of the five year permit term

Coalitions

- Develop, implement, and share same SWMP
- Usually share a boundary or watershed
- Each MS4 is responsible for its own compliance
- Agreements with clear delineation of responsibilities

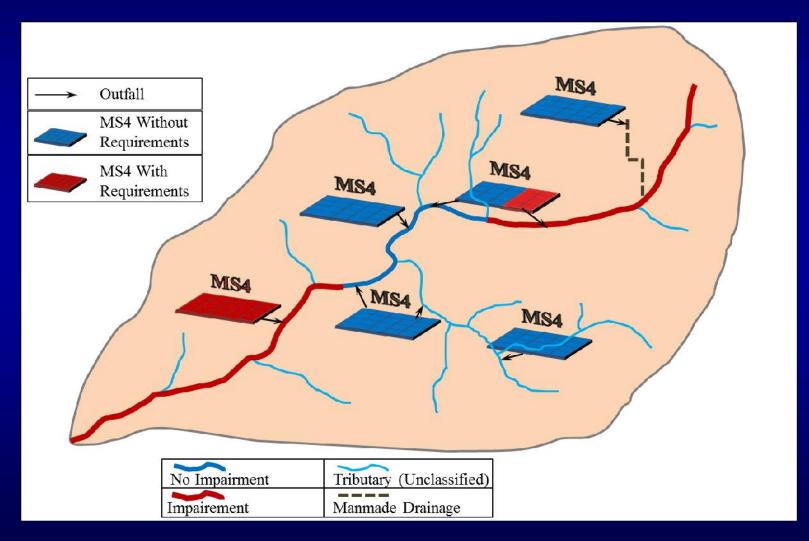
Contents of a SWMP

- Six Minimum Control Measures (MCMs)
 - Operators must address to reduce pollutants from the MS4 to the Maximum Extent Practicable (MEP)
- List of best management practices (BMPs)
- Measurable goals
 - Including frequency, month, and year
- Schedule for implementation

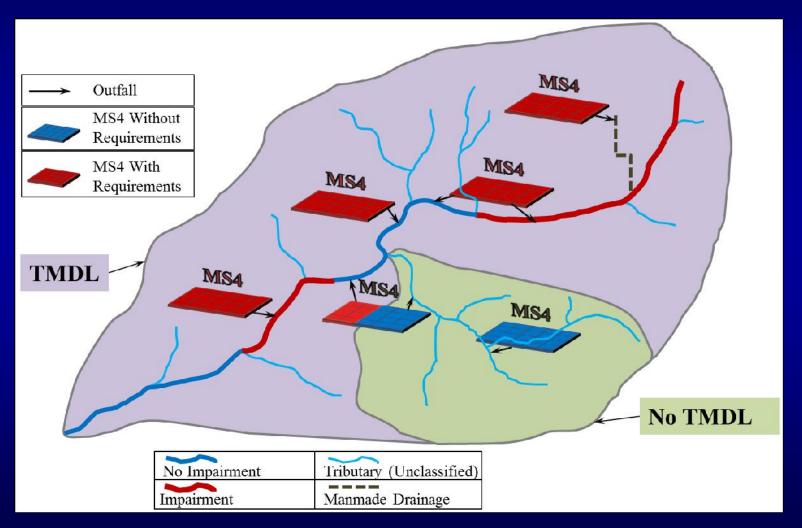
- Minimum Control Measures (MCMs)
 - 1. Public Education, Outreach, and Involvement
 - 2. Illicit Discharge Detection and Elimination
 - 3. Construction Site Stormwater Runoff Control
 - 4. Post-Construction Stormwater Management in New Development and Redevelopment
 - 5. Pollution Prevention and Good Housekeeping for Municipal Operations
 - 6. Industrial Stormwater Sources (*Level 4 only*)
 - 7. Optional MCM for Construction done by the Permittee (MS4)
- Additional requirements for discharges into impaired waterbodies

Impaired Water Bodies

Additional Permit Requirements


- Category 5 CWA 303(d) for stream segment, no TMDL
- Category 4 Not on CWA 303(d), with watershed TMDL

Texas Integrated Report Index of Water Quality Impairments


2012 Texas Integrated Report Index of Water Quality Impairments		
SegID: 0806A Fosdic Lake (unclassified water body) From Fosdic Lake Dam to the reservoir headwaters in Oakland	l Lake Park in Tarrant (County
Parameter(s)	Category	Carryforward
PCBs in edible tissue 0806A_01 Entire lake	4a	Yes
SegID: 0806B Echo Lake (unclassified water body) From Echo Lake Dam to the reservoirs headwaters in Tarrant 6	County	
Parameter(s)	Category	Carryforward
PCBs in edible tissue 0806B_01 Entire lake	4a	Yes
SegID: 0806E Sycamore Creek (unclassified water body) Five mile stretch of Sycamore Creek running upstream from co confluence with Echo Lake Tributary in Fort Worth.	onfluence with the W. I	Fork of Trinity River to
Parameter(s)	Category	Carryforward
bacteria 0806E_01 Five mile stretch of Sycamore Creek running upstream from confluence with the W. Fork of Trinity River to confluence with Echo Lake Tributary in Fort Worth	5b	No

Discharges to Impaired Waterbodies without a TMDL

Discharges to Impaired Waterbodies with a TMDL

Annual Report

- Due 90 days after reporting year
- Flexibility selecting reporting year
 - Fiscal year, calendar year, or permit year
- Reporting year cannot change during the permit term
- Use Annual Report Template (Form 20561)

- Phase II MS4 Remand Rule Published in Fed. Reg. December 9, 2016 with an effective date of Jan. 9, 2017
- > The regulations are revised to ensure that:
 - States determine the adequacy of BMPs and permit requirements
 - States provide public notice and opportunity for the public to request a public hearing

- Procedural rule no substantive changes are made to the Phase II MS4 requirements
- Includes two options for states to administer their Phase II MS4 programs
 - Option 1: Comprehensive general permit approach
 - The general permit needs to include all requirements necessary to meet the MS4 permit standard "to reduce pollutants to the maximum extent practicable" (MEP).
 - Option 2: Two-step General Permit
 - The general permit includes some requirements for all MS4s
 - The state established additional requirements and BMPs for individual MS4s (this is in the SWMPs).

- All permits must be written with terms that are "clear, specific, and measurable"
- The general permits need to use "mandatory" terms and cannot use terms such as:
 - as practicable, should, encouraged, etc.
 - *if feasible*, cannot be used unless it is defined
- The permit language needs to be worded in a manner that will help assess compliance and track whether measurable goals have been met by the MS4.
- EPA published examples of provisions from general permits across the country

https://www.epa.gov/npdes/stormwater-discharges-municipal-sources#resources

Clear	 Certainty in specific actions and requirements Avoid words such as "if practicable", "as necessary", "should"
Specific	 Provide level of detail in requirements that portray level of effort(s) needed from MS4 to comply
Measurable	 Requirement needs to be articulated in a manner to assess compliance in a straightforward way

New Federal Rules – Electronic Reporting Rule 40 CFR Part 127

- Electronic Reporting Rule effective Dec. 21, 2015
 - Requires electronic submittal of applications and reports
 - Phase 1 of Rule: DMRs submitted electronically by Dec. 21, 2016
 - Phase 2 of Rule: General permit applications (NOIs) and MS4 reports need to be submitted electronically by Dec. 21, 2020

Waiver option is available from eReporting (permanent and temporary)

- Religious beliefs
- No internet access
- Training needed

Small MS4 General Permit, TXR04000 2018 Renewal

- Internal TCEQ input Feb. 2017
- Stakeholder Meeting March 21, 2017
 - Comment period ended April 4, 2017
- Development of draft permit April/June 2017
- > EPA Review Fall of 2017
- Public comment period Spring of 2018

Proposed Changes to Existing Permit Consistency with other TPDES General Permits

Definitions

- Define "Infeasible" not technologically possible or not economically practicable and achievable in light of best industry practices
- Update "Construction Activity", "Waters of U.S." and "Impaired Water Bodies"
- MCM 7 Construction Activities where the MS4 is the Site Operator
 - Lower benchmark value for TSS to 50 mg/L from 100 mg/L
 - Analysis must be done by NELAP certified laboratories

Proposed Changes to Existing Permit Consistency with Federal Rules

- Add language to comply with Electronic Reporting Rule
 - EPA will develop tools to accept applications and reports from small MS4s
- Add language to comply with Phase II MS4 Remand Rule
 - Modify permit language to be <u>clear</u>, <u>specific</u> and <u>measurable</u>

Proposed Changes to Existing Permit Examples of clear, specific, and measurable

MCM 1. Public Education, Outreach, and Involvement If feasible, consider using use public input (for example, the opportunity for public comment, or public meetings) in the implementation of the program

➢ MCM 2. IDDE

Inspections – The permittee shall conduct inspections as determined appropriate, in response to complaints, and shall conduct follow-up inspections as needed to ensure that corrective measures have been implemented by the responsible party.

The permittee shall develop written procedures describing the basis for conducting inspections in response to complaints

Proposed Changes to Existing Permit For all MS4s

- Clarify that annexation of land resulting in a level change due to change in population will require a Notice of Change
- Impaired water bodies and TMDL Requirements
 - Clarify terms benchmarks, decorative ponds, pet waste
- New requirement to annual check if a water body within the MS4s permitted area has been added to the latest Integrated Report of Surface Water Quality.
- New requirement to annually review the SWMP

Proposed Changes to Existing Permit For Level 4 MS4s only

- New requirement to publish the annual report and SWMP on MS4 website, if MS4 has one
- Add a program to control the discharge of floatables into the MS4
- Add a program to evaluate new and existing flood management projects for their water quality impact

Phase I MS4s

- Medium and Large MS4s
 - Municipal population 100,000+ (1990 U.S.Census)
 - Includes public entities in the UA
 - Transportation authorities, universities, counties, districts, etc.
 - Universe: 22 individual TPDES permits
 - Includes 50 permittees due to coalitions

*No new permits issued

Requirements of Phase I MS4s

Develop a SWMP to address MCMs in permits

- Public Education and Outreach/Public Involvement and Participation
- Pollution Prevention/Good Housekeeping for Municipal Operations
- MS4 Maintenance Activities
- Illicit Discharge Detection and Elimination
- Construction Site Runoff
- Post-Construction Control Measures
- Industrial & High Risk Runoff

Requirements of Phase I MS4s

Monitoring Requirement Options

- 1. Representative Storm Events
- 2. Representative Rapid Bioassessment or
- 3. Watershed Monitoring
 - Regional Wet Weather Characterization Program

Requirements of Phase I MS4s

Monitoring of Floatables

- Often required in two locations at a frequency two times per year
- Report the amount collected
- Submit Annual Reports
 - TCEQ reviews and provides feedback

TPDES Stormwater Program Contacts

- > Water Quality Division
 - Stormwater & Pretreatment Team
- Rebecca L. Villalba, Team Leader
 - Lindsay Garza, Work Leader
 - Hanne Lehman Nielsen
 - Dan Siebeneicher
 - Gordon Cooper
 - Kent Trede
 - Jessica Alcoser
- Austin Office: (512) 239-4671

Contact Information

 Small Business and Local Government Assistance (SBLGA)
 (800) 447-2827
 TexasenviroHelp@tceq.texas.gov http://www.tceq.texas.gov/assistance

Permitting Information (Technical) (512) 239-4671 swgp@tceq.texas.gov https://www.tceq.texas.gov/permitting/stormwater

United States Department of Agriculture

Overview National Water Quality Initiative (NWQI) Chambers Creek 2017

Richland-Chambers Watershed Protection Plan Meeting Waxahachie, Texas April 2017

Background of the NWQI

- The National Water Quality Initiative (NWQI) was launched in 2012 by USDA's Natural Resources
 Conservation Service (NRCS) in collaboration with the Environmental Protection Agency and state water quality agencies.
- The NWQI is utilized to accelerate the implementation of conservation practices in a concentrated area in an effort to improve water quality while maintaining agricultural productivity.

Helping People Help the Land

- NRCS will work with landowners to develop conservation plans implementing practices such as nutrient management, cover crops, conservation cropping systems, filter strips, terraces and buffers.
- The Environmental Quality Incentives Program (EQIP) funds this assistance, and in some cases, is leveraged by funds from local and state partners.

What are the Benefits of NWQI

Water quality-related conservation practices enhance agricultural profitability through reduced input and enhanced soil health, which results in

- Higher soil organic matter
- Increased infiltration
- Increased water-holding capacity
- Improved nutrient cycling.

What are the Benefits of NWQI

Well-managed farms and ranches limit pollution from runoff, produce food and fiber, sustain rural economies and provide food security to the nation.

Communities benefit by having clean waterways, safer drinking water and healthy habitat for fish and wildlife.

Highlights 2012 through 2016

□ Landowners were encouraged to implement practices that improve water quality.

- These practices included Prescribed Grazing, Cover Crops, Forage and Biomass Planting, Residue Management, Reduced Till, No Till and many others.
- These practices help landowners to protect and care for their land and soil in ways that improve the quality of the water that drains from their lands into creeks and streams.

The landowner response was exceptional and over the past 5 years the NRCS has funded over 120 contracts with over 100 individual landowners and land managers. The following chart lists practices that were applied.

Conservation Practices and "ACT" Avoid, Control and Trap

- > The NWQI emphasizes a "systems approach" to address priority natural resource concerns.
- A cornerstone of this approach is to encourage producers to implement a system of practices that address the concept for Avoiding, Controlling, or Trapping pollutants, or "ACT."

Avoid

Avoidance helps manage nutrients and sediment source control from agricultural lands, including animal production facilities.

Practices such as <u>Nutrient Management</u>, <u>Cover Crop</u>, and <u>Conservation Crop Rotation</u> help producers avoid pollution by reducing the amount of nutrients available in runoff or leaching into water bodies and watersheds.

Practices such as cover crops and crop rotation help take up nutrients to avoid potential runoff and pollution. Crop rotations that include differing crops, such as legumes, can limit amounts of commercial nutrients applied.

Control

Choose practices that will help with controlling erosion and runoff.

Specific practices such as <u>No-till/Strip/Till/Direct</u> <u>Seed</u>, <u>Mulch Tillage</u>, and <u>Ridge Till</u> are foundation practices to recommend to producers.

Practices such as <u>Cover Crop</u> will also do double duty by helping with Avoidance as well as Controlling.

Other facilitating practices, such as <u>Terraces</u> or <u>Stripcropping</u>, help control erosion and may

manage runoff to reduce nutrients loading.

USDA

The last line of defense against potential pollutants is to trap them.

Practices such as <u>Contour Buffers</u>, <u>Filter Strips</u>, <u>Riparian Buffers</u> and the suite of <u>wetland practices to</u> <u>create, enhance, and/or restore</u> <u>wetlands</u> all serve to trap and uptake nutrients before entering water bodies.

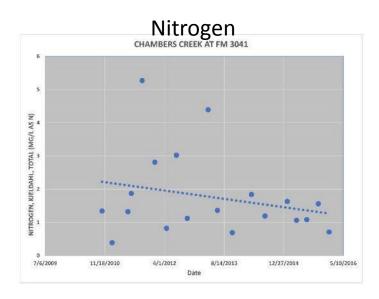
United States Department of Agriculture

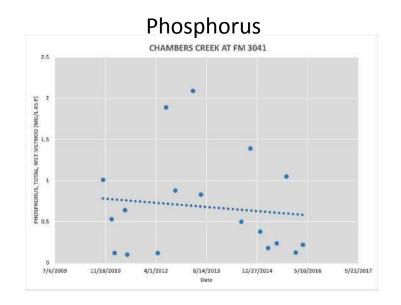
Core Practices	Code	Avoiding	Controlling	Trapping
Waste Storage Facility	313	х	X	
Composting Facility	317	x	Х	
Conservation Cover	327	х		х
Conservation Crop Rotation	328	x		
Residue and Tillage Management, No Till/Strip Till/Direct Seed	329		X	Х
Cover Crop	340	х		Х
Critical Area Planting	342		X	х
Residue Management, Seasonal	344		X	Х
Residue and Tillage Management, Mulch Till	345	1.4	X	х
Field Border	386		Х	Х
Riparian Herbaceous Cover	390			х
Riparian Forest Buffer	391			х
Filter Strip	393		X	х
Stream Habitat Improvement and Management	395	х		
Grade Stabilization Structure	410	2	X	х
Grassed Waterway	412		X	
Irrigation Pipeline	430		X	
Irrigation Reservoir	436	25	Х	
Irrigation Water Management	449		X	
Access Control	472	х		
Livestock Pipeline	516	х		
Prescribed Grazing	528	x		
Range Planting	550		2 2	Х
Heavy Use Area Protection	561	х		
Animal Trails and Walkways	575		Х	
Nutrient Management	590	х		
Terrace	600		X	
Vegetative Barrier	601	15		Х
Tree/Shrub Establishment	612	х		х
Waste Treatment	629		X	
Waste Transfer	634	х		
Water and Sediment Control Basin	638		X	x

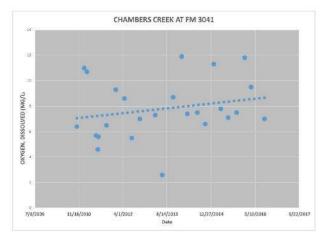
United States Department of Agriculture

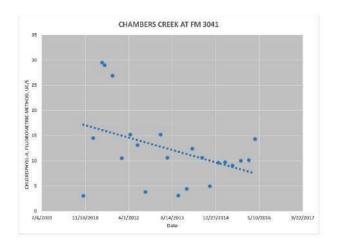
Supporting Practices	Code	Avoiding	Controlling	Trapping
Agrichemical Handling Facility	309	х	· · · · · · · · · · · · · · · · · · ·	
Alley Cropping	311		X	X
Brush Management	314	х	Х	
Herbaceous Weed Control	315	х		
Sediment Basin	350	5	X	
Diversion	362		X	
Roofs and Covers	367	х	X	
Pond	378			X
Windbreak/Shelterbelt Establishment	380		x	х
Silvopasture Establishment	381	х		
Fence	382	х		
Woody Residue Treatment	384	х		
Hedgerow Planting	422	x		X
Irrigation Pipeline	430		x	
Irrigation System, Micro-Irrigation	441	х		
Irrigation System, Sprinkler	442	x	1	
Precision Land Forming	462			х
Lined Waterway or Outlet	468		х	265
Mulching	484		х	Х
Forage and Biomass Planting	512	х	10	x
Livestock Pipeline	516	X	X	
Pond Sealing	521A	x	x	х
Pumping Plant	533	x		
Range Planting	550			Х
Row Arrangement	557	х	80	15.80
Roof Runoff Structure	558	X		
Access Road	560	x	201	
Spring Development	574	x		
Stream Crossing	578	X		
Stripcropping	585		x	
Structure for Water Control	587	· · · · · · · · · · · · · · · · · · ·	x	Х
Integrated Pest Management	595	X		
Herbaceous Wind Barriers	603		x	
Watering Facility	614	x		
Underground Outlet	620		x	
Solid/Liquid Waste Separation Facility	632	· · · · · · · · · · · · · · · · · · ·	x	
Water Harvesting Catchment	636	х	x	
Restoration and Management of Declining Habitats	643	x		
Wetland Wildlife Habitat Management	644		x	
Windbreak/Shelterbelt Renovation	650	2	x	Х
Wetland Restoration	657		x	
Wetland Enhancement	659	7	x	
Upland Wildlife Habitat Management	645	x		

Promising Results

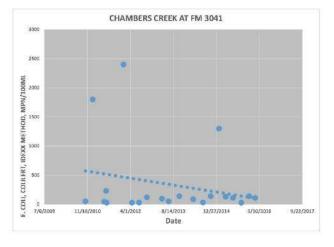

Improving water quality by addressing Non-Point Source pollution through voluntary programs is a long term process with improvements often not realized for decades or longer.


However, after five years of intensive outreach, targeted conservation planning, significant financial assistance and exceptional partnership efforts, the water quality is improving.


 When the data is graphed and a trend line applied the results indicate a trend towards improvements in Nitrogen, Phosphorus, Dissolved Oxygen, Chlorophyll and Bacteria.

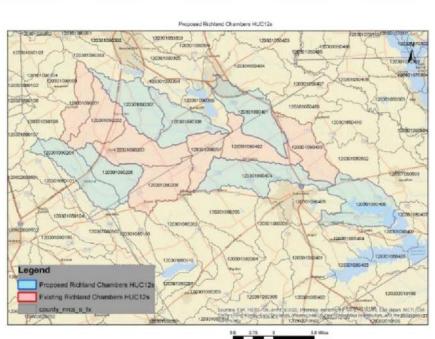


Dissolved Oxygen



Chlorophyll a

Bacteria



What's New for 2017

Expand the program by offering NWQI funding in seven HUC12 watersheds immediately adjacent to the areas we have been treating.

Suspend initiative funding on the highly successful, original designated area. Continue to fund additional work in the previous watershed through other EQIP funding channels.

Partnerships

Tarrant Regional Water District Texas State Soil and Water Conservation Board Texas Commission on Environmental Quality Environmental Protection Agency Navarro Soil and Water Conservation District Ellis-Prairie Soil and Water Conservation District and other private sector partners.

NRCS will continue to coordinate with local, state and federal agencies, conservation districts, nongovernmental organizations and others to implement this initiative

United States Department of Agriculture

Questions?

Kyle Wright State Water Quality Specialist USDA Natural Resources Conservation Service 101 S. Main, Temple, TX 76501 (254)742-9865 Kyle.wright@tx.usda.gov

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992.

USDA is an equal opportunity provider, employer and lender.

Richland-Chambers Watershed Point Source Evaluation ROBERT ADAMS PE – ALAN PLUMMER ASSOCIATES

Richland-Chambers Reservoir Point Source Evaluation

Richland-Chambers Reservoir Watershed Wastewater Outfalls and AUs with Concerns or Impairments

occessor: is call a en approximation based upon the Bert internation available at the time of profiling. Information ratends this map a internee to occessi (parming twee) as only and may not have been paper and to be subble for have, universeling on source and to be not dependent and the fail and a viver do viver prevents appopulation technic locations. The farmat King or all Water Chatrick is not had a viver are written information or demarkane you doubt for each to mis map.

23

Point Source Evaluation Data Gathering

Site Data Lat/lon of discharge point. Receiving stream and segment Flow – average flow (mgd) Point Source Evaluation Data Gathering Water Quality Data Stream Health Biochemical oxygen demand (BOD-mg/L) Carbonaceous BOD (CBOD-mg/L) Total Suspended Solids (TSS) in mg/L Minimum dissolved oxygen (DO) in mg/L Nutrients Ammonia nitrogen (NH₃-N) in mg/L Total phosphorus (TP) in mg/L

Point Source Evaluation Load Assessment

Assess current load, permit limits, and annual variability Permit Limits vs. Actual Discharges Site specific data will be used if available

Point Source Evaluation BMP Assessment

Practices are available for maintaining and improving water quality

Cost considerations

Point Source Evaluation Next steps

Data gathering – letters to permittees Phase I and Phase II 6 month study

Richland-Chambers Watershed Economic Analysis of BMPs Dr Jason Johnson – Texas A&M University and AgriLife Extension

Economic Study of BMPs Identification of Relevant BMPs

Economic Study of BMPs Identification of Relevant Solutions

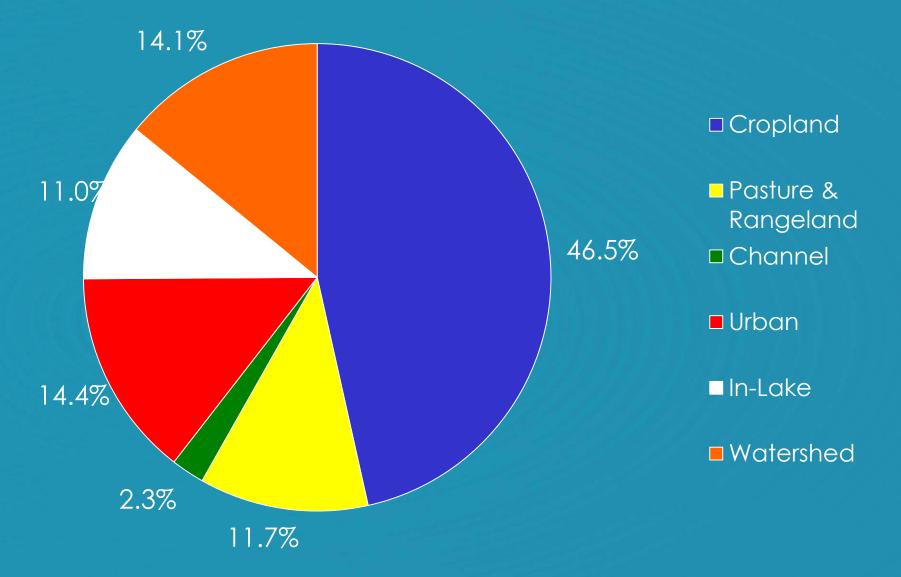
Historic Use of Effective BMPs in Watershed Estimation of Current, Potential and Most Likely Adoption Rates Creation of Budgets for Individual BMPs Ranking of BMPs - least cost for load reduction Identification of suite of BMPs to reach project goal Establish Cost Estimates for Least Cost Solution

Total Eligible Acreage for an Individual BMP

% of Acreage where implementation is possible

% of Acreage Likely to Implement % of Acreage Unlikely to Implement

% of Acreage Currently Implemented


Initial Estimates – Ranking of BMPs

BMP Description	Annual \$ per kg. of P reduced
Establish Filter Strips	\$6.39
Establish Grassed Waterways	\$9.65
Grade Stabilization – gully plugs	\$14.92
Herbicide Application – Riparian Corridor	\$15.37
Required Urban Nutrient Mgt.	\$27.06
Terracing	\$53.39
Conversion of Cropland to Grass/Hay	\$55.31
Critical Pasture Planting – shaping	\$1,005.37
WWTP – Level I to Level III	\$1,153.13
Riparian Buffer Strips – Med. Erosion Areas	\$1,431.70

CEDAR CREEK: Cost-Effective BMP Strategy P Reduction Target

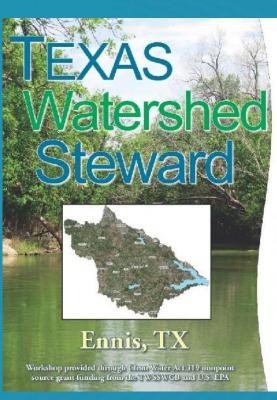
BMP	Cumulative P Reduction (%)
Filter Strips	14.2%
Grade Stabilization Structures	16.1%
Critical Pasture Planting	17.1%
Terracing Cropland	21.3%
WWTP Level II	25.9%
Conversion of Cropland to Pasture	31.7%
Prescribed Grazing	33.1%
2,000 ft. Fertilizer Buffer Around Lake	34.6%

EAGLE MOUNTAIN ANALYSIS Contributions of Cost-Efficient BMP Categories – 29.9% Reduction in P

Economic Study of BMPs Next Steps

Data Gathering – May 24 Workshop BMP historical review and input Economic information development

Next Meeting


May 24, 2017 Ennis Cowboy Church

8:00 Texas Watershed Steward Workshop

12:00 Lunch

1:00 Stakeholder Meeting and BMP Workshop

Register at: http://tws.tamu.edu

The Texas Watershed Steward program is a free educational workshop designed to help watershed residents improve and protect their water resources by getting involved in local watershed protection and management activities.

> May 24, 2017: 8:00 am - 12:00 pm

Cowboy Church of Ennis 429 N Fwy Service Rd Ennis, TX 75119

Register by May 22 for Free Lunch Stakeholder meeting after lunch

 All attendees invited

The workshop will provide an overview of water quality and watershed management in Texas, including a discussion on the Richland-Chambers Reservoir watershed along with efforts by the Tarrant Regional Water District (TRWD) and area residents to improve and protect it. Free lunch sponsored by TRWD, All artendees invited to participate in stakeholder meeting following lunch. Free continuing education credits are offered for a wide variety of professional disciplines. For a complete list of CEUs/continuing education offered, or to register, visit our website or call the number below.

> http://tws.tamu.edu/ Pre-register for the workshop by going to:

GRILIFE

EXTENSION

Next Meeting

- **Texas Watershed Steward Workshop CEUs**
- 2 NM CEUs for Nutrient Management Specialists
- 3 TDA CEUs for pesticide license holders
- 4 TCEQ for: Landscape Irrigators, On-site Sewage Facility Installers, Public Water System Operators, and Wastewater System Operators
- 4 TFMA CECs for Certified Floodplain Managers
- 4 AICP CM hours for Certified Planners
- 4 ASLA CEPHs for Certified Landscape Architects
- 4 CCA CEUs in Soil & Water Management
- 4 TBPE CEPs for Professional Engineers
- 4 Credits applicable to Professional Geoscientists.
- 4 SBEC CPEs FOR Science Educators

Next Meeting

BMP Workshop

Agricultural/Rural

Urban

Education/Outreach

